• Title/Summary/Keyword: 리튬이차전지

Search Result 402, Processing Time 0.033 seconds

A Review on Electrochemical Model for Predicting the Performance of Lithium Secondary Battery (리튬이차전지 성능 모사를 위한 전기화학적 모델링)

  • Yang, Seungwon;Kim, Nayeon;Kim, Eunsae;Lim, Minhong;Park, Joonam;Song, Jihun;Park, Sunho;Appiah, Williams Agyei;Ryou, Myung-Hyun;Lee, Yong Min
    • Journal of the Korean Electrochemical Society
    • /
    • v.22 no.1
    • /
    • pp.43-52
    • /
    • 2019
  • As the application area of lithium secondary batteries becomes wider, performance characterization becomes difficult as well as diverse. To address this issue, battery manufacturers have to evaluate many batteries for a longer period, recruit many researchers and continuously introduce expensive equipment. Simulation techniques based on battery modeling are being introduced to solve such difficulties. Various lithium secondary battery modeling techniques have been reported so far and optimal techniques have been selected and utilized according to their purpose. In this review, the electrochemical modeling based on the Newman model is described in detail. Particularly, we will explain the physical meaning of each equation included in the model; the Butler-Volmer equation, which represents the rate of electrode reaction, the material and charge balance equations for each phase (solid and liquid), and the energy balance. Moreover, simple modeling processes and results based on COMSOL Multiphysics 5.3a will be provided and discussed.

The Influence of Impurities in Room Temperature Ionic Liquid Electrolyte for Lithium Ion Batteries Containing High Potential Cathode (고전압 리튬이차전지를 위한 LiNi0.5Mn1.5O4 양극용 전해질로써 상온 이온성 액체 전해질의 불순물 효과에 관한 연구)

  • Kim, Jiyong;Tron, Artur V.;Yim, Taeeun;Mun, Junyoung
    • Journal of the Korean Electrochemical Society
    • /
    • v.18 no.2
    • /
    • pp.51-57
    • /
    • 2015
  • We report the effect of the impurities including water and bromide in the propylmethylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PMPyr-TFSI) on the electrochemical performance of lithium ion batteries. The several kinds of PMPyr-TFSI electrolytes with different amount of impurities are applied as the electrolyte to the cell with the high potential electrode, $LiNi_{0.5}Mn_{1.5}O_4$ spinel. It is found that the impurities in the electrolytes cause the detrimental effect on the cell performance by tracing the cycleability, voltage profile and Coulombic efficiency. Especially, the polarization and Coulombic efficiency go to worse by both impurities of water and bromide, but the cycleability was not highly influenced by bromide impurity unlike the water impurity.

Effect of Center Pin in Free Fall Test for a Cylindrical Li-ion Cell (원형 리튬 전지의 센터 핀이 낙하 충격에 미치는 영향)

  • Kim, Simon;Lee, Young Shin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.6
    • /
    • pp.639-644
    • /
    • 2015
  • A cylindrical secondary Li-ion cell is a device in which stored chemical energy is converted to electrical energy via an electrochemical reaction. These cells are widely used for applications that require high capacity and rate power, such as notebooks, power tools, and electric vehicles. The role of a center pin is to retain the channel for gas release, preventing blockage of the hollow of the jelly roll during a charge-discharge cycle, and to prevent an internal short circuit for tearing of separator under mechanical free fall. In this paper, two experiments are conducted with and without the center pin to experimentally verify the importance of the role of the center pin. The first experiment is a 50-cycle charge-discharge cycle test, and the second is a free fall test conducted according to the Underwriters Laboratories (UL) standards. Based on these experiments, we demonstrate that the center pin in a cylindrical cell is a very important component in terms of safety.

A Study on the Synthesis and Electrochemical Characteristics of Carbonized Coffee Powder for Use as a Lithium-Ion Battery Anode (리튬 이온 이차전지 음극 활물질용 탄화 커피 분말 제조 및 전기화학적인 특성연구)

  • Kim, Tae Gyun;Cho, Jin Hyuk;Pham-Cong, De;Jeon, Injun;Hwang, Jin Hyun;Kim, Kyoung Hwa;Cho, Chae Ryong
    • New Physics: Sae Mulli
    • /
    • v.68 no.12
    • /
    • pp.1315-1323
    • /
    • 2018
  • We studied the carbonization due to the annealing condition of waste coffee powder for application as an active anode material for lithium-ion batteries (LIBs). The coffee powder used as an active anode material for LIBs was obtained from coffee beans, not from a coffee shells. The waste coffee powder was dried in air and heat-treated in an $Ar/H_2$ atmosphere to obtain a pore-forming activated carbon powder. The specific capacity of the sample annealed at $700^{\circ}C$ was still 303 mAh/g after 1000 cycles at a current density of 1000 mA/g and with a coulombic efficiency of over 99.5%. The number of pores and the pore size of the waste coffee powder were increased due to chemical treatment with KOH, which had the some effect as an increased specific surface area. The waste coffee powder is considered to be a very promising active anode material because of both its excellent electrochemical properties due to enhanced carrier conduction and its being a cost effective resource for use in LIBs.

The Qualitative Analysis of Lithium-Ion Battery Pulse Charging Algorithms for EV/PHEV (EV/PHEV용 리튬 이온 이차전지의 펄스 충전 알고리즘의 정성적 해석)

  • Lee, Eun-Ju;Jeong, Da-Youn;Jeon, Joon-Young;Shin, Seung-Min;Lee, Byoung-Kuk
    • Proceedings of the KIPE Conference
    • /
    • 2010.11a
    • /
    • pp.347-348
    • /
    • 2010
  • 본 논문에서는 현재 EV/PHEV(전기자동차 및 하이브리드전기자동차)용으로 주목 받고 있는 리튬 이온 이차전지의 충전 알고리즘들 중에서 펄스(Pulse) 충전 알고리즘과 가변 주파수 펄스 충전 알고리즘을 CC/CV(정전류/정전압) 충전 알고리즘과 충전시간과 안정도, 전지 수명 부분에서 비교 및 분석한다. 그 결과 제시되는 펄스 충전 알고리즘의 장점을 기존의 결과론적인 분석에서 나아가 전기적, 화학적 근거를 통해 정성적으로 분석한다.

  • PDF

A study on the fabrication of high purity lithium carbonate by recrystallization of low grade lithium carbonate (저급 탄산리튬의 재결정화를 통한 고순도 탄산리튬 제조에 대한 연구)

  • Kim, Boram;Kim, Dae-Weon;Hwang, Sung-Ok;Jung, Soo-Hoon;Yang, Dae-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.1
    • /
    • pp.16-23
    • /
    • 2021
  • Lithium carbonate recovered from the waste solution generated during the lithium secondary battery manufacturing process contains heavy metals such as cobalt, nickel, and manganese. In this study, the recrystallization of lithium carbonate was performed to remove heavy metals contained in the powder and to increase the purity of lithium carbonate. First, the leaching efficiency of lithium carbonate according to pH in the aqueous hydrochloric acid solution was examined, and the effect on the recrystallization of lithium carbonate according to the equivalent and concentration of sodium carbonate was confirmed. As the equivalent and concentration of sodium carbonate increased, the recovery rate of lithium carbonate improved. And the SEM image showed that the crystal shape was changed depending on the reaction conditions with sodium carbonate. Finally, the high purity lithium carbonate of 99.9% or more was recovered by washing with water.