• Title/Summary/Keyword: 리튬이온

Search Result 909, Processing Time 0.042 seconds

저궤도 위성용 리튬-이온 배터리의 성능 확보를 위한 Balancing기법에 관한 고찰

  • Lee, Sang-Rok;Im, Seong-Bin;Jeon, Hyeon-Jin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.188.1-188.1
    • /
    • 2012
  • 인공위성에 사용되는 배터리 기술은 1960년대 최초로 사용된 니켈 카드뮴(NiCd)을 시작으로 발전하기 시작해서 현재는 리튬-이온(Li-Ion)에 이르렀다. 리튬-이온 배터리는 높은 Energy Density(작은 크기와 무게), 낮은 자가 방전율을 가짐과 동시에 메모리 효과가 거의 없다는 장점이 있다. 하지만 리튬-이온 배터리 팩의 성능(Voltage, Capacity, Lifetime)은 사용된 Cell간 특성차이(State of Charge, Total Capacity Difference, Internal Impedance)에 의해 제한된다. 일반적으로 배터리는 원하는 전압과 용량을 확보하기 위해 직렬-병렬 혹은 병렬-직렬 구조를 가지는 팩 형태로 제작 된다. Cell간 특성차이가 존재하는 상태에서 배터리 팩을 사용할 경우 특정 Cell의 과충전 및 과방전이 발생하며 이로 인해 수명이 단축될 수 있고 심한 경우 폭발이 발생할 수 도 있다. 또한 Cell간 특성차이는 배터리팩의 사용가능 용량을 제한하는 효과를 가져 온다. 본 논문에서는 Battery 팩을 구성하는 Cell들에 특성 차이가 존재할 경우 발생할 수 있는 Battery 팩의 수명 단축 및 용량 감소 Mechanism에 대해서 고찰한다. 또한 Cell간 특성차이를 극복하기 위해 실제 위성 운용에 적용될 수 있는 배터리팩의 Balancing 방안과 함께 위성에 장착을 위해 보관중인 4p12s Battery의 Balancing 방안에 대해 고찰하고 Balancing 전후의 Cell간 특성(Voltage Dispersion) 차이 측정결과를 보인다. 이렇게 본 논문에서 소개한 리튬-이온 배터리의 전반적인 Balancing 방안은 추후 인공위성에 적용되는 리튬-이온 배터리의 운용 및 보관에 Guide Line을 제시할 것이라고 판단한다.

  • PDF

Entropy Extracting Method of Li-ion Battery Using Commercial Equipment (상용 장비를 이용한 리튬이온 배터리의 엔트로피 추출방법)

  • Park, Cheol-heui;Lee, Sang-Gug
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.318-320
    • /
    • 2017
  • 본 연구는 리튬이온 배터리의 엔트로피를 측정하는 방법인 ETM(Electro Thermodynamics Measurement)을 상용 장비에 적용하는 방법에 관한 것이다. 그리고 엔트로피 측정에 필요한 온도변경시간과 배터리의 relaxation 시간을 최소화함으로써, 측정의 정확성을 유지하면서 측정 시간을 최소화 했다.

  • PDF

Removal Characteristics of Lithium Ions by Fixed-bed Column Packed with Strong-Acid Cation Exchange Resin (강산성 양이온 교환수지를 충전한 고정층에서 리튬이온의 제거특성)

  • You, Hae-Na;Lee, Min-Gyu
    • Clean Technology
    • /
    • v.20 no.2
    • /
    • pp.166-170
    • /
    • 2014
  • The continuous experiments were carried out using fixed-bed column packed with strong-acid cation exchange resin for the removal of lithium ions from aqueous solution. The parameters such as bed height, flow rate and inlet concentration were investigated. Breakthrough time ($t_{0.05}$), saturation time ($t_{0.95}$), and total amount of lithium ion removed (mtotal) were obtained from the breakthrough curves. The results showed that $t_{0.05}$ and $t_{0.95}$ decreased with decreasing bed height, and decreased with increasing inlet concentration and flow rate. mtotal increased with increasing inlet concentration and bed height, but decreased with increasing flow rate. Thomas model and Yoon-Nelson model equations were applied to the experimental data, the results showed that the breakthrough data gave a good fit to Thomas model equation.

Structure Analysis of Li-ion Battery Using Neutron Beam Source (중성자를 이용한 리튬이온 이차전지 전극 구조분석)

  • Kim, Chang-Seob;Park, Heon-Yong;Liang, Lianhua;Kim, Ji-Young;Seong, Baek-Seok;Kim, Keon
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.1
    • /
    • pp.20-24
    • /
    • 2007
  • Lithium ion secondary battery has been applied widely to portable devices, and has been studied for application to high power electric cell system such as power tool or hybrid electronic vehicle. The structure change of the electrodes materials occur when lithium ions move between electrodes. Neutron or X-rays can analyze the structure of electrode. The advantage of X-rays is convenient in test. However X-rays is scattered by electron cloud in atoms. Therefore, The elucidation for correct position of lithium is difficult with X-rays because lithium has small atomic weight. Neutron analysis techniques could solve this problem. In this review, We wish to discuss about structure analysis and the principle of structural characterization method using neutron beam source.

Lithium - A Critical Metal for Clean Energy Technologies: A Comprehensive Review on Challenges and Opportunities for Securing Lithium from Primary and Secondary Resources (리튬-청정 에너지 기술의 핵심금속: 1차 및 2차 자원으로부터 리튬 확보를 위한 도전과 기회에 대한 종합적 고찰)

  • Swain, Basudev;Kim, Min-seuk;Lee, Chan-Gi;Chung, Kyeong Woo;Lee, Jae-chun
    • Resources Recycling
    • /
    • v.28 no.5
    • /
    • pp.3-18
    • /
    • 2019
  • Due to the increasing demand for clean energy, the consumption of lithium ion batteries (LIBs) is expected to grow steadily. Therefore, stable supply of lithium is becoming an important issue globally. Commercially, most of lithium is produced from the brine and minerals viz., spodumene, although various processes/technologies have been developed to recover lithium from other resources such as low grade ores, clays, seawaters and waste lithium ion batteries. In particular, commercialization of such recycling technologies for end-of-life LIBs being generated from various sources including mobile phones and electric vehicles(EVs), has a great potential. This review presents the commercial processes and also the emerging technologies for exploiting minerals and brines, besides that of newly developed lithium-recovery-processes for the waste LIBs. In addition, the future lithium-supply is discussed from the technical point of view. Amongst the emerging processes being developed for lithium recovery from low-grade ores, focus is mostly on the pyro-cum-hydrometallurgical based approaches, though only a few of such approaches have matured. Because of low recycling rate (<1%) of lithium globally compared to the consumption of lithium ion batteries (56% of lithium produced currently), processing of secondary resources could be foresighted as the grand opportunity. Considering the carbon economy, environment, and energy concerns, the hydrometallurgical process may potentially resolve the issue.

Li-Ion Traction Batteries for All-Electric Vehicle (전 전기자동차용 리튬이온 이차전지 기술동향)

  • Cho, Mann;Nah, Do-Baek;Kil, Sang-Chul;Kim, Sang-Woo
    • Journal of Energy Engineering
    • /
    • v.20 no.2
    • /
    • pp.109-122
    • /
    • 2011
  • The production capacity of EV models should be sufficient to achieve the goal of one million EVs by 2015. Large-Format lithium-ion battery are expected to find a prominent role as ideal electrochemical storage systems in traction power train for sustainable vehicles such as all-electric vehicles. This review focuses first on the present status of production lithium-ion battery technology and cooperative relations of between battery and EV makers, then on its near future development.

Lithium-Ion Batteries for Plug-In Hybrid Electric Vehicle (플러그인 하이브리드자동차용 리튬이온 이차전지)

  • Cho, Mann;Son, Young-Mok;Nah, Do-Baek;Kil, Sang-Cheol;Kim, Sang-Woo
    • Journal of Energy Engineering
    • /
    • v.19 no.2
    • /
    • pp.81-91
    • /
    • 2010
  • Plug-in hybrid electric vehicles(PHEVs) are gaining attention over the world due to their abilities to reduce $CO_2$ emission and gasoline/diesel consumption by using electricity from the grid. Lithium ion battery is one of the most suitable candidates as energy storage device for PHEVs applications up to 2030. This review focuses on the present status of lithium ion battery technology, then on comparison of the performance characteristics of the promising cathode materials.

Study on a screening method of retired Lithium Ion battery cells for recycling (폐 리튬이온 배터리 셀의 재활용을 위한 스크리닝 방식 고찰)

  • Lee, Chun-Gu;Park, Joung-Hu;Lee, Seong-Jun;Kim, Jong-Hoon
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.225-227
    • /
    • 2018
  • 일반적으로 리튬이온은 배터리들은 각 배터리마다 고유의 전기화학적 특성을 갖고 있으며 이러한 특성들로 인해서 직렬 또는 병렬로 패키징 되어서 팩으로 사용 될 때 각 셀 간의 전압 불균형이 발생하게 된다. 셀 벨런싱 회로 같은 셀 간 불균형을 회복시켜주는 기능이 없다면 배터리 팩 내의 셀 간 전압 불균형은 시간이 지남에 따라 더 커지게 되고 이는 배터리 팩의 노화를 가속 시키거나 배터리 팩의 성능을 저하시키는 원인이 된다. 이는 폐 리튬이온 배터리 팩을 재활용하는데 있어서도 반드시 고려해야하는 사항으로서 재활용 팩의 사용시간에 영향을 끼칠 수 있다. 위의 문제를 극복하기 위해서는 배터리 팩을 만들기 전에 스크리닝을 통해서 전기화학적 성분이 유사한 배터리들을 팩으로 만드는 것이 필요하다. 일반적으로 프레시 배터리의 용량은 거의 비슷하기 때문에 프레시 배터리 용량은 프레시 배터리를 스크리닝 하기 위한 많은 기준들 중에서 가중치가 크지 않지만 폐 리튬이온 배터리들은 각 배터리마다 고유의 전기화학적 특성을 갖을 뿐만 아니라 각 배터리마다 상이한 배터리 용량을 갖고 있기 때문에 각 배터리의 용량에 프레시 배터리를 스크리닝 할 때보다 큰 가중치를 두어 스크리닝 할 필요가 있다. 본 논문에서는 같은 전류 프로파일로 노화된 배터리 팩 내의 셀들의 전기화학적 특성을 분석하여 폐배터리 셀들을 재활용하기 위한 스크리닝 방법에 대해서 고찰한다.

  • PDF