• Title/Summary/Keyword: 리스크경영시스템

Search Result 57, Processing Time 0.033 seconds

An Analysis on the Centrality of Domestic Areas and Ports: Using SNA Methodology (SNA 분석을 이용한 해상 수출입화물의 네트워크 구조와 국내 항만의 중심성 분석)

  • Kim, Joo-Hye;Kim, Chi-Yeol
    • Journal of Korea Port Economic Association
    • /
    • v.38 no.4
    • /
    • pp.25-43
    • /
    • 2022
  • Unlike the past, efforts must be made to interpret physical distribution from a network perspective as the service area expands spatially. In addition, logistics networks are undergoing rapid changes due to various changes in the environment. Therefore, the purpose of this study is to analyze the changes in the structure of maritime cargo and the centrality of ports using social network analysis. Using the trade data of domestic maritime at five-year intervals, we investigated changes in the network structure and identified the main factors that affect the centrality of domestic ports. Ports with the highest centrality, which is seen as a port that plays the role of an intermediary, emerged in the order of Busan and Ulsan. This study predicts patterns of domestic cargo trade over the next 20 years based on changes in port centrality and understanding of maritime cargo network, and can be used as reference materials for risk preparation.

The Development of RFID Utility Statistical Analysis Tool (RUSAT) in Comparison to Barcode for Logistics Activities (물류활동에서 RFID와 바코드 시스템의 효용성 비교를 위한 통계분석 도구(RUSAT) 개발)

  • Ha, Heon-Cheol;Park, Heung-Sun;Kim, Hyun-Soo;Choi, Yong-Jung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.5
    • /
    • pp.137-146
    • /
    • 2012
  • In SCM(Supply Chain Management), a management paradigm where the customer satisfaction is to be achieved by minimizing the cost, reducing the uncertainty, and obtaining the overall optimization. As it performs the integrated operation of the paths of information, assets, and knowledge from the raw material providers to the retailers, the adoption of RFID(Radio Frequency Identification) in SCM could be expected to magnify the effectiveness of the system. However, there is a huge risk by deciding whether or not RFID system is adopted without the objective analysis under the uncertain circumstances. This research paper presents the statistical analysis methodologies for the comparison of RFID with Barcode on the aspect of utility and the statistical analysis tool, RUSAT, which was programmed for nonstatisticians' convenience. Assuming a pharmaceutical industry, this paper illustrates how the data were entered and analyzed in RUSAT. The results of this research are expected to be used not only for the pharmaceutical related company but also for the manufacturer, the whole-saler, and the retailer in the other logistic industries.

A Study on Industry-specific Sustainability Strategy: Analyzing ESG Reports and News Articles (산업별 지속가능경영 전략 고찰: ESG 보고서와 뉴스 기사를 중심으로)

  • WonHee Kim;YoungOk Kwon
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.3
    • /
    • pp.287-316
    • /
    • 2023
  • As global energy crisis and the COVID-19 pandemic have emerged as social issues, there is a growing demand for companies to move away from profit-centric business models and embrace sustainable management that balances environmental, social, and governance (ESG) factors. ESG activities of companies vary across industries, and industry-specific weights are applied in ESG evaluations. Therefore, it is important to develop strategic management approaches that reflect the characteristics of each industry and the importance of each ESG factor. Additionally, with the stance of strengthened focus on ESG disclosures, specific guidelines are needed to identify and report on sustainable management activities of domestic companies. To understand corporate sustainability strategies, analyzing ESG reports and news articles by industry can help identify strategic characteristics in specific industries. However, each company has its own unique strategies and report structures, making it difficult to grasp detailed trends or action items. In our study, we analyzed ESG reports (2019-2021) and news articles (2019-2022) of six companies in the 'Finance,' 'Manufacturing,' and 'IT' sectors to examine the sustainability strategies of leading domestic ESG companies. Text mining techniques such as keyword frequency analysis and topic modeling were applied to identify industry-specific, ESG element-specific management strategies and issues. The analysis revealed that in the 'Finance' sector, customer-centric management strategies and efforts to promote an inclusive culture within and outside the company were prominent. Strategies addressing climate change, such as carbon neutrality and expanding green finance, were also emphasized. In the 'Manufacturing' sector, the focus was on creating sustainable communities through occupational health and safety issues, sustainable supply chain management, low-carbon technology development, and eco-friendly investments to achieve carbon neutrality. In the 'IT' sector, there was a tendency to focus on technological innovation and digital responsibility to enhance social value through technology. Furthermore, the key issues identified in the ESG factors were as follows: under the 'Environmental' element, issues such as greenhouse gas and carbon emission management, industry-specific eco-friendly activities, and green partnerships were identified. Under the 'Social' element, key issues included social contribution activities through stakeholder engagement, supporting the growth and coexistence of members and partner companies, and enhancing customer value through stable service provision. Under the 'Governance' element, key issues were identified as strengthening board independence through the appointment of outside directors, risk management and communication for sustainable growth, and establishing transparent governance structures. The exploration of the relationship between ESG disclosures in reports and ESG issues in news articles revealed that the sustainability strategies disclosed in reports were aligned with the issues related to ESG disclosed in news articles. However, there was a tendency to strengthen ESG activities for prevention and improvement after negative media coverage that could have a negative impact on corporate image. Additionally, environmental issues were mentioned more frequently in news articles compared to ESG reports, with environmental-related keywords being emphasized in the 'Finance' sector in the reports. Thus, ESG reports and news articles shared some similarities in content due to the sharing of information sources. However, the impact of media coverage influenced the emphasis on specific sustainability strategies, and the extent of mentioning environmental issues varied across documents. Based on our study, the following contributions were derived. From a practical perspective, companies need to consider their characteristics and establish sustainability strategies that align with their capabilities and situations. From an academic perspective, unlike previous studies on ESG strategies, we present a subdivided methodology through analysis considering the industry-specific characteristics of companies.

A Machine Learning-based Total Production Time Prediction Method for Customized-Manufacturing Companies (주문생산 기업을 위한 기계학습 기반 총생산시간 예측 기법)

  • Park, Do-Myung;Choi, HyungRim;Park, Byung-Kwon
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.177-190
    • /
    • 2021
  • Due to the development of the fourth industrial revolution technology, efforts are being made to improve areas that humans cannot handle by utilizing artificial intelligence techniques such as machine learning. Although on-demand production companies also want to reduce corporate risks such as delays in delivery by predicting total production time for orders, they are having difficulty predicting this because the total production time is all different for each order. The Theory of Constraints (TOC) theory was developed to find the least efficient areas to increase order throughput and reduce order total cost, but failed to provide a forecast of total production time. Order production varies from order to order due to various customer needs, so the total production time of individual orders can be measured postmortem, but it is difficult to predict in advance. The total measured production time of existing orders is also different, which has limitations that cannot be used as standard time. As a result, experienced managers rely on persimmons rather than on the use of the system, while inexperienced managers use simple management indicators (e.g., 60 days total production time for raw materials, 90 days total production time for steel plates, etc.). Too fast work instructions based on imperfections or indicators cause congestion, which leads to productivity degradation, and too late leads to increased production costs or failure to meet delivery dates due to emergency processing. Failure to meet the deadline will result in compensation for delayed compensation or adversely affect business and collection sectors. In this study, to address these problems, an entity that operates an order production system seeks to find a machine learning model that estimates the total production time of new orders. It uses orders, production, and process performance for materials used for machine learning. We compared and analyzed OLS, GLM Gamma, Extra Trees, and Random Forest algorithms as the best algorithms for estimating total production time and present the results.

Enhancing Technology Learning Capabilities for Catch-up and Post Catch-up Innovations (기술학습역량 강화를 통한 추격 및 탈추격 혁신 촉진)

  • Bae, Zong-Tae;Lee, Jong-Seon;Koo, Bonjin
    • The Journal of Small Business Innovation
    • /
    • v.19 no.2
    • /
    • pp.53-68
    • /
    • 2016
  • Motivation and activities for technological learning, entrepreneurship, innovation, and creativity are driving forces of economic development in Asian countries. In the early stages of technological development, technological learning and entrepreneurship are efficient ways in which to catch up with advanced countries because firms can accumulate skills and knowledge quickly at relatively low risk. In the later stages of technological development, however, innovation and creativity become more important. This study aims to identify a) the factors (learning capabilities) that influence technological learning performance and b) barriers to enhancing innovation capabilities for the creative economy and organizations. The major part of this study is related to learning capabilities in the post-catch-up era. Based on a literature review and observations from Korean experiences, this study proposes a technological learning model composed of various influencing factors on technological learning. Three hypotheses are derived, and data are collected from Korean machine tool manufacturers. Intense interviews with CEOs and R&D directors are conducted using structured questionnaires. Statistical analysis, such as correlation and ANOVA are then carried out. Furthermore, this study addresses how to enhance innovation capabilities to move forward. Innovation enablers and barriers are identified by case studies and policy analysis. The results of the empirical study identify several levels of firms' learning capabilities and activities such as a) stock of technology, b) potential of technical labor, c) explicit technological efforts, d) readiness to learn, e) top management support, f) a formal technological learning system, g) high learning motivation, h) appropriate technology choice, and i) specific goal setting. These learning capabilities determine firms' learning performance, especially in the early stages of development. Furthermore, it is found that the critical factors for successful technological learning vary along the stages of technology development. Throughout the statistical and policy analyses, this study confirms that technological learning can be understood as an intrinsic principle of the technology development process. Firms perform proactive and creative learning in the late stages, while reactive and imitative learning prevails in the early stages. In addition, this study identifies the driving forces or facilitating factors enhancing innovation performance in the post catch-up era. The results of the preliminary case studies and policy analysis show some facilitating factors such as a) the strategic intent of the CEO and corporate culture, b) leadership and change agents, c) design principles and routines, d) ecosystem and collaboration with partners, and e) intensive R&D investment.

  • PDF

An Investigation on the Periodical Transition of News related to North Korea using Text Mining (텍스트마이닝을 활용한 북한 관련 뉴스의 기간별 변화과정 고찰)

  • Park, Chul-Soo
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.3
    • /
    • pp.63-88
    • /
    • 2019
  • The goal of this paper is to investigate changes in North Korea's domestic and foreign policies through automated text analysis over North Korea represented in South Korean mass media. Based on that data, we then analyze the status of text mining research, using a text mining technique to find the topics, methods, and trends of text mining research. We also investigate the characteristics and method of analysis of the text mining techniques, confirmed by analysis of the data. In this study, R program was used to apply the text mining technique. R program is free software for statistical computing and graphics. Also, Text mining methods allow to highlight the most frequently used keywords in a paragraph of texts. One can create a word cloud, also referred as text cloud or tag cloud. This study proposes a procedure to find meaningful tendencies based on a combination of word cloud, and co-occurrence networks. This study aims to more objectively explore the images of North Korea represented in South Korean newspapers by quantitatively reviewing the patterns of language use related to North Korea from 2016. 11. 1 to 2019. 5. 23 newspaper big data. In this study, we divided into three periods considering recent inter - Korean relations. Before January 1, 2018, it was set as a Before Phase of Peace Building. From January 1, 2018 to February 24, 2019, we have set up a Peace Building Phase. The New Year's message of Kim Jong-un and the Olympics of Pyeong Chang formed an atmosphere of peace on the Korean peninsula. After the Hanoi Pease summit, the third period was the silence of the relationship between North Korea and the United States. Therefore, it was called Depression Phase of Peace Building. This study analyzes news articles related to North Korea of the Korea Press Foundation database(www.bigkinds.or.kr) through text mining, to investigate characteristics of the Kim Jong-un regime's South Korea policy and unification discourse. The main results of this study show that trends in the North Korean national policy agenda can be discovered based on clustering and visualization algorithms. In particular, it examines the changes in the international circumstances, domestic conflicts, the living conditions of North Korea, the South's Aid project for the North, the conflicts of the two Koreas, North Korean nuclear issue, and the North Korean refugee problem through the co-occurrence word analysis. It also offers an analysis of South Korean mentality toward North Korea in terms of the semantic prosody. In the Before Phase of Peace Building, the results of the analysis showed the order of 'Missiles', 'North Korea Nuclear', 'Diplomacy', 'Unification', and ' South-North Korean'. The results of Peace Building Phase are extracted the order of 'Panmunjom', 'Unification', 'North Korea Nuclear', 'Diplomacy', and 'Military'. The results of Depression Phase of Peace Building derived the order of 'North Korea Nuclear', 'North and South Korea', 'Missile', 'State Department', and 'International'. There are 16 words adopted in all three periods. The order is as follows: 'missile', 'North Korea Nuclear', 'Diplomacy', 'Unification', 'North and South Korea', 'Military', 'Kaesong Industrial Complex', 'Defense', 'Sanctions', 'Denuclearization', 'Peace', 'Exchange and Cooperation', and 'South Korea'. We expect that the results of this study will contribute to analyze the trends of news content of North Korea associated with North Korea's provocations. And future research on North Korean trends will be conducted based on the results of this study. We will continue to study the model development for North Korea risk measurement that can anticipate and respond to North Korea's behavior in advance. We expect that the text mining analysis method and the scientific data analysis technique will be applied to North Korea and unification research field. Through these academic studies, I hope to see a lot of studies that make important contributions to the nation.

Risk Factor Analysis for Preventing Foodborne Illness in Restaurants and the Development of Food Safety Training Materials (레스토랑 식중독 예방을 위한 위해 요소 규명 및 위생교육 매체 개발)

  • Park, Sung-Hee;Noh, Jae-Min;Chang, Hye-Ja;Kang, Young-Jae;Kwak, Tong-Kyung
    • Korean journal of food and cookery science
    • /
    • v.23 no.5
    • /
    • pp.589-600
    • /
    • 2007
  • Recently, with the rapid expansion of the franchise restaurants, ensuring food safety has become essential for restaurant growth. Consequently, the need for food safety training and related material is in increasing demand. In this study, we identified potentially hazardous risk factors for ensuring food safety in restaurants through a food safety monitoring tool, and developed training materials for restaurant employees based on the results. The surveyed restaurants, consisting of 6 Korean restaurants and 1 Japanese restaurant were located in Seoul. Their average check was 15,500 won, ranging from 9,000 to 23,000 won. The range of their total space was 297.5 to $1322.4m^2$, and the amount of kitchen space per total area ranged from 4.4 to 30 percent. The mean score for food safety management performance was 57 out of 100 points, with a range of 51 to 73 points. For risk factor analysis, the most frequently cited sanitary violations involved the handwashing methods/handwashing facilities supplies (7.5%), receiving activities (7.5%), checking and recording of frozen/refrigerated foods temperature (0%), holding foods off the floor (0%), washing of fruits and vegetables (42%), planning and supervising facility cleaning and maintaining programs of facilities (50%), pest control (13%), and toilet equipped/cleaned (13%). Base on these results, the main points that were addressed in the hygiene training of restaurant employees included 4 principles and 8 concepts. The four principles consisted of personal hygiene, prevention of food contamination, time/temperature control, and refrigerator storage. The eight concepts included: (1) personal hygiene and cleanliness with proper handwashing, (2) approved food source and receiving management (3) refrigerator and freezer control, (4) storage management, (5) labeling, (6) prevention of food contamination, (7) cooking and reheating control, and (8) cleaning, sanitation, and plumbing control. Finally, a hygiene training manual and poster leaflets were developed as a food safety training materials for restaurants employees.