• Title/Summary/Keyword: 리브 형상

Search Result 89, Processing Time 0.024 seconds

Analytical Study on the Characteristic of Fatigue Behavior in Connection Parts of Orthotropic Steel Decks with Retrofitted Structural Details in Longitudinal Rib (세로리브 내부 보강상세에 따른 강바닥판 연결부의 피로거동 특성에 관한 해석적 연구)

  • Sun, Chang Won;Park, Kyung Jin;Kyung, Kab Soo;Kim, Kyo Hoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.1
    • /
    • pp.105-119
    • /
    • 2008
  • In steel deck bridges suffering directly on wheel load according to the number of serviced years, the occurrence of fatigue cracks increases in structural details, which includes the cross section parts of the longitudinal rib and transversal rib, and so on. Through the control method for these fatigue cracks the increased thickness of the steel deck plate or the application of retrofit detail to the inside of the longitudinal rib was observed to be effective. This study suggests structural details for the retrofitted and non-retrofitted longitudinal rib. The target details in this study are the connection parts of the lo ngitudinal and transversal rib, and the slit parts of transverse rib where fatigue cracks were frequently reported in previous studies. In the analyses, detailed structural analyses were performed as parameters, which include the shape, change of size and attached position. From the results the stress reduction in the target details was observed to be larger in the retroffited details. Also, the improvement of fatigue strength is more effective in the retrofitted details with the vertical rib than the bulkhead plate.

Estimation of Orthotropic Flexural Rigidities Considering the Deformed Shape for a Plate Stiffened with Rectangular Ribs (변형 형상을 고려한 평강 리브 보강판의 직교이방성 휨강성 산정)

  • Chu, Seok Beom;Im, Kwan Hyuk
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.6
    • /
    • pp.621-632
    • /
    • 2007
  • The purpose of this study was the estimation and formulation of orthotropic flexural rigidities considering the deformed shape for a plate stiffened with rectangular ribs. Analytical results of methods modifying the flexural rigidity of the x-direction, the y-direction or both directions were compared at the center, the x-directional quarter point and the y-directional quarter point of stiffened plates loaded at the center. The composite method modifying the flexural rigidity of both directions improves the accuracy compared with the other methods. Moreover, the ratio of modified coefficients for each directional rigidity can be expressed as a function corresponding to each dimension of stiffened plates. The application of modified coefficient functions to various types of stiffened plates with different boundary conditions, aspect ratios and rib arrangement shows that the increment of the error ratio is small compared with examples of this study and the application of proposed functions shows more accurate results than previous methods modifying the flexural rigidity. Therefore, by using the modified coefficient functions proposed in this study, the orthotropic plate analysis of plates stiffened with rectangular ribs can easily achieve more accurate displacement results.

Effects of the Wire-screen Rib on Heat Transfer and Friction Factors (와이어 스크린 리브이 열전달과 마찰계수에 미치는 효과)

  • Oh, Se-Kyung;Ahn, Soo-Whan;Lee, Dae-Hee
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.2
    • /
    • pp.196-203
    • /
    • 2011
  • Experiments to determine heat transfer coefficients and friction factors are conducted on a stationary transverse parallel wire-screen rib roughened rectangular channel. The test section consists of 198 mm (W) x 40 mm (H) x 712 mm (L). The channel has the aspect ratio of 4.95 and hydraulic diameter of $D_h$=6.66 cm. Four wire screen ribs and a solid rib are used. 0.1 mm-thick-stainless steel foil heaters and thermocouples (T type) are used to measure the heat transfer coefficients. Reynolds numbers studied range from 20,000 to 60,000. The wire-screen rib height (e) to hydraulic diameter ($D_h$) ratio ($e/D_h$) is 0.075; spacing (p) to height ratio (p/e) is 10. Results indicate that the solid rib produces the greatest Nusselt number and friction factor.

The Effects of Woven Metal Screen Ribs on Heat Transfer and Pressure Drops in the 5:1 Aspect Ratio Rectangular Duct (5:1의 형상비를 갖는 사각덕트에서 직조 스크린 리입(rib)이 열전달과 마찰계수에 미치는 영향)

  • Oh, S.K.;Ary, B.K.P.;Ahn, S.W.;Lee, M.S.
    • Journal of Power System Engineering
    • /
    • v.15 no.3
    • /
    • pp.31-37
    • /
    • 2011
  • 직조 금속 스크린 리브(rib) 이 바닥에 설치된 사각 덕트에서 열전달과 유체유동의 압력강하를 측정하기 위해 실험적 연구를 수행하였다. 시험부의 치수는 200 mm(W) ${\times}$ 40 mm(H) ${\times}$ 712 mm(L)이고 수력직경은 66.6 mm이다. 입구영역에는 1.72m 길이의 가열되지 않은 동일한 치수의 채널을 설치하였다. 메쉬가 다른 4가지의 직조금속 스크린 리브에 대해 측정하였다. 그리고 비교를 위해 일체형 리브에 대해서도 측정하였다. 국부 열전달 계수의 측정에는 스테인레스 강제 포일(foil) 히터와 T형 열전대률 이용하였다. 레이놀즈 수는 23,000에서 58,000의 범위이다. 덕트의 수력직경($D_h$)에 대한 직조 금속 리브의 높이(e)의 비($e/D_h$)는 0.075 이고 리브 간격(p)과 높이의 비(p/e)는 10이다. 실험 결과 메쉬가 없는 일체형 리입에서 가장 누셀트 수와 마찰계수가 컷다.

Nonlinear Stress Analysis of Dust Covers for Ball Joint of Automotive Steering System (자동차 조향장치의 볼 조인트 더스트 커버의 비선형 응력해석)

  • Kim, Ji Ho;Lee, Boo Youn
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.10
    • /
    • pp.1297-1303
    • /
    • 2013
  • A nonlinear finite element analysis is performed to evaluate the sealing capability and stress of dust covers for the ball joint of an automotive steering system. The analysis is performed for two types of dust covers: wrinkle type and pot type. The assembly condition and operation condition are analyzed, and the maximum stress and contact normal stress at the ribs are evaluated. It is confirmed that the sealing capability of both types is fairly good, but the wrinkle type is better than the pot type in terms of the maximum stress.

Shape optimization of angled ribs to enhance cooling efficiency (냉각효율 향상을 위한 경사진 리브의 형상최적설계)

  • Kim, Hong-Min;Kim, Kwang-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.627-630
    • /
    • 2003
  • This work presents a numerical procedure to optimize the shape of three-dimensional channel with angled ribs mounted on one of the walls to enhance turbulent heat transfer. The response surface method is used as an optimization technique with Reynolds-averaged Navier-Stokes analysis of flow and heat transfer. SST turbulence model is used as a turbulence closure. The width-to-height ratio of the rib, rib height-to-channel height ratio, pitch-to-rib height ratio and attack angle of the rib are chosen as design variables. The objective function is defined as a linear combination of heat-transfer and friction-loss related terms with weighting factor. D-optimal experimental design method is used to determine the data points. Optimum shapes of the channel have been obtained for the weighting factors in the range from 0.0 to 1.0.

  • PDF

The Technology to Control the Flow Velocity of Non-Symmetric Rib-Web Shape Hot Forged Part (비대칭 리브-웨브형상 열간 단조품의 변형 속도 제어 기술)

  • 이영선;이정환
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.1
    • /
    • pp.209-215
    • /
    • 2000
  • Precision forging technology that can control flow velocity of workpiece have been developed to minimize the amounts of machining. To get the uniform rib length, flow velocity distribution is needed to be estimated and controlled. Computer-aided design is known for very effective to estimate the deformation behavior and design the die for controlling the flow velocity. In this study, die design to control the deformation velocity are investigated using the DEFORM-2D about rib-web shape parts. Also we can get uniform rib length by enforcing the back pressure at end section of rib. The applied load of back pressure farming is lower than that of conventional forging. These results are analysed and confirmed by the experiment.

  • PDF

Mechanical behaviour of rib-reinforced precast tunnel liner according to variable rib-reinforcement shapes (프리캐스트 터널 Liner의 리브보강 형상변화에 따른 역학적 거동 특성)

  • Lee, Gyu-Phil;Lee, Seong-Won;Hwang, Jae-Hong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.3
    • /
    • pp.265-275
    • /
    • 2009
  • Due to the limitation of construction efficiency and structural safety, the application of the high covering and wide width tunnels was limited prior to the introduction of precast rut and cover tunnels. Therefore, a cut and cover tunnel structure with rib reinforcement is proposed to mechanically improve the safety on condition of high covering and wide width tunnel. Therefore, a technical problem that can provide a response similar to the actual filling conditions is analyzed by the finite element analyses, moreover, the mechanical behaviour of developed rib-reinforced precast tunnel liner through a large-sized model test will be investigated. The ultimate load of the developed rib-reinforced precast tunnel liner shows a 3% reduction compared to existing rib-reinforced precast tunnel liner, especially, the section of rib-reinforcement decreased to 55% compared to it of existing. Therefore, the stability of tunnel structure can be significantly improved through the developed rib-reinforced precast segment.

Ultimate Strength of Anchorage Zone according to Geometric Parameters of Post-Tensioning Anchorage using a Finite Element Method (유한요소해석을 통한 포스트텐션 정착구 형상 변수의 정착부 극한강도 영향 분석)

  • Kwon, Yangsu;Kim, Jin-Kook;Kwak, Hyo-Gyoung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.3
    • /
    • pp.317-324
    • /
    • 2015
  • The design of anchorage zone in a post-tensioned member has been started from the evaluation of the ultimate resisting capacity as well as the maximum bursting stress developed, and a lot of design codes including AASHTO and PTI describe their design equations to determine the bearing strength of concrete at the anchorage zone. However, these equations usually give conservative results because their derivation is based on the simple anchorage with a wide bearing plate in the surface without any additional consideration for the load transfer mechanism through transverse ribs on the anchorage. To assess the influence of geometric parameters related to the transverse ribs on the resisting capacity of anchorage block, experiments and analysis are conducted. After verifying the validity of numerical model conducted through correlation studies between experimental and analytical results, parametric studies with changes in the transverse ribs are followed and design recommendations for the anchorage block are suggested from the numerical results obtained.

Evaluation of In-plane Buckling and Ultimate Strength for Braced Arch Ribs (브레이스트 아치 리브의 면내 좌굴 및 극한강도 평가)

  • Park, Yong Myung;Heo, Taek Young;Lee, Pil Goo;Noh, Kyeung Bae
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.6 s.73
    • /
    • pp.759-768
    • /
    • 2004
  • The parametric analysis of vertically braced steel pipe arch ribs was performed to evaluate their in-plane buckling strengths and ultimate load-carrying capacities. The elastic and plastic behavior of braced arch ribs, unlike those of the usual single arch ribs, are affected by such factors as the flexural rigidity of the brace member, brace and pipe ribs spacing, loading situation, and arch curvature. To analyze these effects, several parameters were included, such as the rise-to-span ratio, the second moment of the inertia ratio of the rib to the brace member, the space ratio of the brace, the space ratio of the upper and lower ribs, the initial crookedness, the slenderness ratios of the braced arch ribs, and the loading conditions were considered with live-load-to-dead-load ratios. Based on the results of the parametric analyses, a proper profile of the braced arch rib was proposed. A large-scale structural experiment was also performed to evaluate the ultimate strength of the braced arch rib. The test results were determined to reasonably coincide with the analytical ones.