Browse > Article
http://dx.doi.org/10.5916/jkosme.2011.35.2.196

Effects of the Wire-screen Rib on Heat Transfer and Friction Factors  

Oh, Se-Kyung (경상대학교 기계시스템공학과)
Ahn, Soo-Whan (경상대학교 해양산업연구소 기계시스템공학과)
Lee, Dae-Hee (인제대학교 기계자동차공학부 고안전차량핵심기술연구소)
Abstract
Experiments to determine heat transfer coefficients and friction factors are conducted on a stationary transverse parallel wire-screen rib roughened rectangular channel. The test section consists of 198 mm (W) x 40 mm (H) x 712 mm (L). The channel has the aspect ratio of 4.95 and hydraulic diameter of $D_h$=6.66 cm. Four wire screen ribs and a solid rib are used. 0.1 mm-thick-stainless steel foil heaters and thermocouples (T type) are used to measure the heat transfer coefficients. Reynolds numbers studied range from 20,000 to 60,000. The wire-screen rib height (e) to hydraulic diameter ($D_h$) ratio ($e/D_h$) is 0.075; spacing (p) to height ratio (p/e) is 10. Results indicate that the solid rib produces the greatest Nusselt number and friction factor.
Keywords
Wire-screen rib; Heat transfer; Friction factor; Rectangular channel;
Citations & Related Records
연도 인용수 순위
  • Reference
1 F. W. Dittus and L. M. K. Boelter, University of California(Berkeley) Pub. Eng., vol. 2, p. 443, 1930.
2 E. M. Micheal, Radiative heat transfer, Academic Press, San Diego, pp. 162-189, 2003.
3 S. J. Kline and F. A. McClintock, "Describing uncertainties in single sample experiments", Mechanical Engineering, vol. 75, pp. 3-8, 1953.
4 P. J. Richards and M. Tobinsons, "Wind loads on porous structure". J. Wind Eng. Ind. Aerodyn., vol. 83, pp. 455-465, 1999.   DOI   ScienceOn
5 A. Bejan, S. L. Kim, A. I. M. Morega, and S. W. Lee, "Cooling of stacks of plates shielded by porous screens", Int. J. Heat Fluid Flow, vol. 16, pp. 16-24, 1994.
6 J. Tian, K. Kim, T. J. Lu, H. P. Hodson, D. T. Qucheillant, D. J. Sypeck, and H. N. G. Waley, "The effects of topology upon fluid-flow and heat transfer within cellular copper structures", Int. J. Heat Mass Transfer, vol. 47, pp. 3171-3186, 2004.   DOI   ScienceOn
7 D. W. Zhou, and S. J. Lee, "Heat transfer enhancement of impinging jets using mesh screens", Int. J. Heat Mass Transfer, vol. 47, pp. 2097-2108, 2004.   DOI   ScienceOn
8 S. Ergun, "Fluid flow through packed column", Chem. Eng. Prog., vol. 48, pp. 89-94, 1952.
9 J. C. Armour and J.N. Cannon, "Fluid flow through woven screens", AIChE J. vol. 14, pp. 415-421, 1968.   DOI
10 J. R. Sodre and J. A. R. Parise, "Friction factor determination for flow through finite wire mesh woven screen matrices", ASME J. Fluid Eng. vol. 119, pp. 847-851, 1997.   DOI   ScienceOn
11 C. T. Hsu, K. W. Wong, and P. Cheng, "Effective stagnant thermal conductivity of wire screen", J. Thermophysics, vol. 10, pp. 542-545, 1996.   DOI   ScienceOn
12 M. Ozdemir and A. F. Ozgue, "Porosity variation and determination of REV in porous medium of screen meshes", Int. Commun. Heat Mass Transfer, vol. 24, pp. 955-964, 1997.   DOI   ScienceOn
13 N. S. Tharur, J. S. Saini, and S. C. Solanki, "Heat transfer and friction factor correlations for packed bed solar air heater for a low porosity system", Solar Energy, pp. 319-329, 2003.
14 T. Ebisu, "Development of new concept air-cooled heat exchanger for energy conservation of air-conditioning machine", in Heat Transfer Enhancement of Heat Exchangers, S. Kakac et al. Eds., Kluwer Academic, Dordrecht, pp. 601-620, 1999.
15 W. M. Kays and A. L. London, Compact heat exchanger, McGraw Hill Inc., 1964.
16 U. Bin-Nun and D. Mantitakos, "Low cost and high performance screen laminate regenerator matrix", Cryogenics, vol. 44, pp. 439-444, 2004.   DOI   ScienceOn
17 A. Kolb, E.R.F.Winter, and R. Viskanta, "Experimental studies on a solar collector with metal matrix absorber", Solar Energy, vol. 65, pp. 91-98, 1999.   DOI   ScienceOn