• 제목/요약/키워드: 리뷰평점

검색결과 62건 처리시간 0.021초

리뷰어 평점 이력이 리뷰 조작에 대한 인식 및 리뷰 유용성에 미치는 영향: 여행플랫폼을 중심으로

  • 장문경;이새롬;백현미
    • 한국벤처창업학회:학술대회논문집
    • /
    • 한국벤처창업학회 2022년도 추계학술대회
    • /
    • pp.181-185
    • /
    • 2022
  • 고객들은 조작된 온라인 리뷰가 범람하는 가운데 진정성과 가치를 지닌 리뷰를 보고자한다. 귀인 이론(Attribution theory)의 관점에서, 사람들은 리뷰어의 과거 평가 이력을 바탕으로 리뷰가 진정성 있는지를 판단하는 경향이 있다. 이러한 배경에서 본 연구의 목적은 리뷰어의 과거 평점 이력이 조작된 리뷰로 인식하는 것에 어떠한 영향을 미치며, 최종적으로 리뷰 유용성이 어떠한 영향을 미치는지 알아보는 것이다. 제안된 가설을 검증하기 위해 2차 데이터 분석(연구1)과 실험(연구2)을 수행했으며, 두 연구는 일관된 결과를 보여준다. 연구 1은 리뷰어의 과거 평가 이력이 리뷰 유용성에 미치는 영향을 분석하였다. 귀인이론에 근거하면, 사람들은 리뷰를 다른 목적을 가지고 작성되었다고 인식할 경우에 리뷰가 조작되었다고 생각하고, 그 리뷰가 물건이나 서비스의 진정한 가치를 평가하지 않았다고 간주한다. 따라서 해당 리뷰는 유용성이 낮게 평가되는 경향이 있다. 2차 데이터를 분석하기 위해 우리는 Python을 이용한 웹 스크레이퍼를 개발하여 TripAdvisor(TripAdvisor.com)에서 호텔 정보, 리뷰, 리뷰 정보 등의 연구 데이터를 수집하였다. 수집한 890명 리뷰어에 대한 100,621개의 리뷰를 분석하기 위해 음이항 회귀 분석을 수행하였다. 분석 결과, 평균 평점을 낮게 주는 리뷰어의 경우에 리뷰 유용성에 유의미한 영향을 미치지 않는 것으로 나타났다. 사람들은 극단적인 평점을 거의 주지 않는 리뷰어가 작성한 리뷰가 더 도움이 된다고 평가했다. 연구 2는 리뷰어의 과거 평점 이력을 기준으로 리뷰가 조작되었다고 평가하는 사람들의 인식 프로세스를 실험하였다. 실험 결과, 사람들은 리뷰어의 과거 평점 이력이 평균적으로 평점을 낮게 주는 경우에는 리뷰가 의심스럽다고 판단하지 않는 것으로 나타났다. 그리고 사람들은 리뷰어가 대부분 극단적인 평점을 주는 이력이 있다면 해당 리뷰어가 작성한 리뷰가 의심스럽다고 판단하는 것으로 나타났다. 연구2는 사람들이 리뷰어의 과거 평점 이력을 바탕으로 리뷰가 조작되었는지 또는 리뷰가 도움이 되는지 판단하는 경향이 있음을 보여준다. 본 연구는 귀인이론을 바탕으로 리뷰어의 과거 평점 이력이 리뷰 조작성에 대한 인식과 리뷰 유용성에 미치는 영향을 분석하여, 해당 연구분야에 새로운 관점을 추가한 기여점이 있다.

  • PDF

방한 관광객의 온라인 리뷰에 대한 빅데이터 분석 기반의 감성분석 및 평점 예측모형 (Sentiment Analysis and Star Rating Prediction Based on Big Data Analysis of Online Reviews of Foreign Tourists Visiting Korea)

  • 홍태호
    • 지식경영연구
    • /
    • 제23권1호
    • /
    • pp.187-201
    • /
    • 2022
  • 관광객이 작성한 온라인 리뷰는 관광산업의 관리 및 운영에 중요한 정보를 제공한다. 평점은 제품이나 서비스에 대한 정량적인 평가로 간편하지만 관광객의 진실한 태도를 반영하기 어려우며 평점과 리뷰내용에 대한 불일치 문제도 발생하고 있다. 불일치 문제는 잠재고객에게 혼동을 줄 수 있으며 구매의사결정에도 영향을 미칠 수 있다. 본 연구에서는 온라인 리뷰기반의 평점 예측모형을 통해 평점과 리뷰내용의 불일치 문제를 해결하고자 한다. 한국을 방문한 외국인 관광객이 작성한 관광지와 호텔에 대한 리뷰의 감성분석을 통해 평점과 감성의 차이를 비교하고 TF-IDF vectorization과 감성분석 결과로 변수를 선정하였다. 로짓, 인공신경망, SVM(Support Vector Machine)을 적용하여 평점을 분류하고, 인공신경망, SVR(Support Vector Regression)을 통해 평점을 예측하였다. 평점 분류모형과 예측모형 모두 불일치한 리뷰를 제거하고 감성분석을 반영한 모형에서 우수한 성과를 보여주었다. 본 연구에서 제안한 온라인 리뷰 기반의 평점 예측모형은 평점과 리뷰내용에 대한 불일치 문제를 해결하여 신뢰할 수 있는 정보를 제공하였으며 평점이 없는 온라인 리뷰에도 활용할 수 있을 것이다.

치킨 리뷰의 이면: 텍스트 마이닝을 통한 리뷰의 탐색적 분석을 중심으로 (BEHIND CHICKEN RATINGS: An Exploratory Analysis of Yogiyo Reviews Through Text Mining)

  • 김준겸;최은솔;윤수현;이유빈;김동환
    • 한국콘텐츠학회논문지
    • /
    • 제21권11호
    • /
    • pp.30-40
    • /
    • 2021
  • 코로나 19의 영향으로 배달앱 시장이 빠르게 성장하며, 리뷰와 평점이 더욱 중요해지고 있다. 그러나 급격하게 늘어난 리뷰와 평점의 신뢰도에 의문이 제기되고 있다. 따라서 본 연구는 리뷰와 평점을 탐색적으로 분석하여 배달앱 리뷰의 신뢰도와 유용성을 파악하고, 이를 높일 방법을 탐구하였다. 텍스트 마이닝 기법을 사용하여 도출한 결과는 다음과 같다. 첫째, 요기요와 네이버 지도, 구글 지도의 음식점 평점을 분석한 결과, 요기요는 가장 우편향된 평점 분포를 보여주었다. 둘째, 요기요의 세부 평점 요인(맛, 양, 배달)간에는 모두 강한 양의 상관관계가 있었고, 이는 부정 리뷰의 단어 분석에서도 드러났다. 셋째, 리뷰의 극성에 따라 사용되는 품사와 형태소의 비율이 달랐다. 넷째, 전체 리뷰 데이터에서 367개의 부정어를 선별한 후, 이를 분류하여 치킨 전용 부정어 사전을 제작하였다. 본 연구는 치킨 리뷰의 탐색적 분석을 통해 앞으로 배달앱 리뷰에 대한 연구가 나아가야 할 방향을 제시하였다.

빅데이터를 활용한 영화 흥행에 따른 리뷰길이 변화 (Changes in Review Length Based on the Popularity of Movies Using Big Data)

  • 조용희;박이슬;김혜진
    • 한국콘텐츠학회논문지
    • /
    • 제18권5호
    • /
    • pp.367-375
    • /
    • 2018
  • 본 연구에서는 영화 관람 후 높은 평점을 매긴 집단과 낮은 평점을 매긴 집단 중 어느 집단이 영화에 대해 더 많은 이야기를 하는지, 즉 온라인 리뷰를 길게 작성하는지에 대해 알아보고자 하였다. 이를 위해 네이버 영화 API에서 제공하는 영화 평점과 리뷰 데이터를 수집하였고, 한국영화진흥위원회에서 제공하는 영화 손익분기점 데이터를 이용하여 영화를 흥행성공, 흥행부진, 흥행실패로 구분하여 영화 평점과 리뷰길이 간의 상관관계, 영화 개봉 전과 후, 흥행여부에 따른 리뷰길이의 특성, 마지막으로 영화 평점이 리뷰길이에 영향을 미치는가에 대한 회귀분석을 실시하여 제시하였다.

영화리뷰 감성 분석을 통한 평점 예측 연구 (Sentiment Analysis of movie review for predicting movie rating)

  • 조정태;최상현
    • 경영과정보연구
    • /
    • 제34권3호
    • /
    • pp.161-177
    • /
    • 2015
  • 인터넷 포털은 많은 양의 정보를 빠르고 쉽게 이용 할 수 있다는 특성 때문에 지속적으로 영향력이 커지고 있다. 웹 이용자들은 다양한 정보 습득, 네티즌 간의 정보 교환 등 다양한 목적을 위해 포털 사이트를 사용하고 있다. 문화콘텐츠 이용자들은 타인의 경험을 미리 알아보기 위해 포털 사이트에서 정보를 검색한 후 해당콘텐츠를 사용하고 개인적인 의견을 게시하기도 한다. 영화를 보고자 하는 이용자들은 관련 정보를 검색하고 얻는 과정에서 영화에 대한 다른 이용자들이 게시한 다양한 정보들을 접하게 된다. 영화 관련 포털사이트에서는 영화에 대한 제한된 글자수의 리뷰와 평점을 제공하는데 이와 같은 정보의 영향으로 영화에 대한 태도를 형성할 뿐 아니라, 영화 관람 여부를 결정하도록 만들 수 있다. 하지만 영화 리뷰는 사용자가 전체를 읽을 수 없기 때문에 일부 리뷰와 리뷰 개개의 평점보다는 전체 평점을 참고 하여 의사결정을 하는 정도가 대부분이다. 이처럼 전체 평점만을 참고하게 되면 편향적인 정보 습득으로 인하여 잘못된 판단을 할 수 있게 된다. 이러한 리뷰의 특성에도 불구하고 리뷰는 사용자의 의견을 풍부하게 드러내고 영화를 보지 않은 다른 이용자들의 선택에 영향을 미친다는 점에서 다양한 실용적 활용성을 갖는 데이터임은 분명하다. 본 연구에서는 리뷰 데이터를 활용하여 평점을 예측하기 위한 평점예측 연구를 수행하였다. 리뷰테이터를 형태소로 추출하고 형태소별로 극성값을 계산하여 리뷰에 대한 평점을 예측하는 모형으로서, 기존의 긍부정 값만을 근거로 하는 모형에 비해 정확도가 높아진 것을 확인하였다.

  • PDF

사용자 리뷰를 이용한 상품 특징 추출 및 평점 분배 (Product Feature Extraction and Rating Distribution Using User Reviews)

  • 손수빈;전종훈
    • 한국전자거래학회지
    • /
    • 제22권1호
    • /
    • pp.65-87
    • /
    • 2017
  • 온라인 쇼핑몰에서 상품에 대한 사용자 리뷰와 평점을 분석하여 상품의 특징을 자동으로 추출하고 평점이 어떤 특징에 의해 부여된 것인지 판단하여 각 특징에 분배하여 점수화함으로써 상품의 특징을 파악할 수 있는 방법을 제안한다. 기존 방식은 상품 구매 여부를 결정하기 위해서 많은 리뷰와 평점을 읽는데 시간을 허비하거나, 상품의 장단점을 파악하기 어려울 뿐더러 상품에 부여된 평점이 어떠한 특징에 의해서 부여되었는지 알 수 없는 구조로 되어있다. 따라서 본 논문에서는 이러한 문제를 해소하기 위하여 사용자 리뷰에서 상품의 특징을 자동으로 추출하고 각 특징별 평점을 전체 평점에서 자동으로 분배 계산하여 보여주는 방법을 제안한다. 제안하는 방법은 상품별 리뷰와 평점을 수집하여 형태소 분석을 수행하고 이를 통해 상품의 특징과 이에 대한 감성어를 추출한다. 또한, 상품의 특징을 파악할 수 있도록 각 특징에 대한 가중치를 특징이 출현한 문장의 극성을 판단하여 부여하는 방법을 기술한다. 실험을 통하여 얻은 결과와 기존 방법을 비교하는 설문조사를 통하여 제안하는 방법의 유용성을 입증하였고, 상품 리뷰 전문가의 분석과 실험의 결과를 비교함으로써 타당성을 입증하였다.

평점 예측 모델 개발을 위한 관광지 만족도 정량 지수 구축: 제주도 관광지 리뷰를 중심으로 (Development of a Tourist Satisfaction Quantitative Index for Building a Rating Prediction Model: Focusing on Jeju Island Tourist Spot Reviews)

  • 윤동규;박기태;최상현
    • 지능정보연구
    • /
    • 제29권4호
    • /
    • pp.185-205
    • /
    • 2023
  • 코로나19 팬데믹 이후 관광 산업이 회복되면서 많은 관광객들이 다양한 플랫폼을 활용하고 리뷰를 남기고 있지만, 대량의 데이터 속에서 유용한 정보를 찾기 어려워 아직도 여행지 선정 과정에서 많은 시간과 비용이 낭비되고 있다. 이에 따라 많은 연구들이 진행되고 있지만, 평점이 없거나 플랫폼별로 다른 형태의 평점 제공으로 인해 연구에 한계를 가지고 있으며, 평점과 리뷰 내용이 일치하지 않는 경우도 있어 추천 모델 구축에 어려움을 주고 있다. 본 연구에서는 이러한 문제를 해결하기 위해 7,104개의 제주도 지역 관광지 리뷰를 활용하여 제주도에 특화된 관광지 만족도 정량 지수를 개발하고 이를 활용하여 '평점 예측 모델'을 구축하였다. 모델의 성능을 확인하기 위해 실험 데이터 700건의 평점을 본 연구에서 개발된 모델과 LSTM을 활용하여 예측 하였으며, 제안된 모델이 LSTM 보다 약 4.67% 높은 73.87%의 가중 정확도로 성능이 더 우수한 것을 확인하였다. 본 연구의 결과를 통해 평점과 리뷰 내용 사이의 불일치 문제를 해결하고, 평점이 없는 리뷰나 다양한 형태의 평점을 정형할 수 있으며, 다른 도메인에 적용하여 여행의 모든 분야에서 신뢰할 수 있는 평점 지표를 제공할 수 있을 것으로 기대된다.

Multi-channel CNN 기반 온라인 리뷰 유용성 예측 모델 개발에 관한 연구 (A multi-channel CNN based online review helpfulness prediction model)

  • 이흠철;윤효림;이청용;김재경
    • 지능정보연구
    • /
    • 제28권2호
    • /
    • pp.171-189
    • /
    • 2022
  • 온라인 리뷰는 소비자의 구매 의사결정 과정에서 중요한 역할을 담당하고 있으므로 소비자에게 유용하고 신뢰성이 있는 리뷰를 제공하는 것이 중요하다. 기존의 온라인 리뷰 유용성 예측 관련 연구는 주로 온라인 리뷰의 텍스트와 평점 정보 간의 일관성을 바탕으로 리뷰 유용성을 예측하였다. 그러나 기존 연구는 평점 정보를 스칼라로 표현했기 때문에 표현 수용력이 제한적이거나 평점 정보와 리뷰 텍스트 정보와의 상호작용을 제한적으로 학습하는 한계가 존재한다. 본 연구에서는 기존 연구의 한계점을 보완하기 위해 리뷰 텍스트와 평점 정보 간의 상호작용을 효과적으로 학습할 수 있는 CNN-RHP(CNN based Review Helpfulness Prediction) 모델을 제안하였다. 먼저, 리뷰 텍스트의 의미론적 특성을 추출하기 위해 multi-channel CNN을 적용하였다. 다음으로, 평점 정보는 텍스트 특성과 동일한 차원을 나타내는 독립된 고차원 임베딩 특성 벡터로 변환하였다. 최종적으로 요소별(Element-wise) 연산을 통해 리뷰 텍스트와 평점 정보 간의 일관성을 학습하였다. 본 연구에서는 제안된 CNN-RHP 모델의 성능을 평가하기 위해 Amazom.com에서 수집된 온라인 소비자 리뷰를 사용하였다. 실험 결과, 본 연구에서 제안한 CNN-RHP 모델이 기존 연구에서 제안된 여러 모델과 비교했을 때 우수한 예측 성능을 나타내는 것을 확인하였다. 본 연구의 결과는 온라인 전자상거래 플랫폼에서 소비자들에게 리뷰 유용성 예측 서비스를 제공할 때 유의미한 시사점을 제공할 수 있다.

온라인 리뷰 소비 및 생성에 대한 일시적 이상 현상의 차등 효과 (The Differential Impacts of Temporary Aberration on Online Review Consumption and Generation)

  • 이준영;김형진
    • 경영정보학연구
    • /
    • 제23권3호
    • /
    • pp.127-158
    • /
    • 2021
  • 많은 온라인 여행 대행사(OTA; online travel agencies)들은 고객 만족을 위해 호텔에 대하여 평균 평점과 함께 가장 최근에 게시된 리뷰 정보를 제공하고 있다. 이 두 가지 정보(평균 평점 및 최근 게시된 리뷰)가 행동 의사 결정 과정에 미치는 상대적 영향을 확인하기 위해, 본 논문에서는 두 가지 연구를 수행하였다. 첫째로, 실험 연구 설계를 사용하여 온라인 리뷰 소비에서 두 가지 정보의 상대적 영향을 조사하였고, 둘째로, 온라인 리뷰 생성에 대한 상대적 영향을 경험적 접근방식을 통해 확인하였다. 분석 결과, 리뷰 생성의 경우, 사람들은 평균 평점과 최근 리뷰의 불일치를 관찰할 때(일시적 이상현상이 있을 때), 방향에 관계없이 최근 리뷰에서 벗어나려는 경향(반응 행동)을 보였다. 한편, 리뷰소비자는 일시적 이상 현상에서 최근 게시된 리뷰의 의견에 순응하려는 경향(군집 행동)을 보였다. 그리고 두 경우 모두, 최근 게시된 리뷰가 부정적일 때 그 효과가 커짐을 확인하였다. 이 결과를 바탕으로, 본 연구는 평균 평점과 최근 게시된 리뷰라는 두 가지 정보 사이의 상대적 영향과 이들이 온라인 리뷰 소비와 생성에 미치는 다른 영향에 대한 이론적 및 실제적 시사점을 제공하였다.

온라인 판매촉진활동 분석을 통한 고객 리뷰평점 추천 및 예측에 관한 연구 : S사 Wearable 상품중심으로 (A Study on Customer Review Rating Recommendation and Prediction through Online Promotional Activity Analysis - Focusing on "S" Company Wearable Products -)

  • 신호철
    • 한국콘텐츠학회논문지
    • /
    • 제22권4호
    • /
    • pp.118-129
    • /
    • 2022
  • 본 논문에서는 국내 온라인 기업의 Wearable 제품을 선정하고 판매 데이터를 수집해 다양한 분석과 매출 예측을 통해 판촉 활동의 전략 모델을 연구하는 데 목적이 있다. 데이터 분석을 위해 여러 가지의 알고리즘을 사용하여 분석할 것이며, 최상의 모형으로 결과를 선택할 것이다. 최상의 결과로 선택된 모형인 Gradient Boosting 모델은 지도학습을 통해 종속변수 예측에 있어서 판촉 유형, 가격, 판매 수량, 성별, 모델, 판매경로, 제품 성능, 판매 날짜, 지역 등 9개의 독립변수를 투입할 수 있게 된다. 본 연구에서는 판매촉진 유형별로 종속변수로 설정된 리뷰 값을 앙상블 분석 기법을 통해 더욱더 세부적으로 학습하고 분석 및 예측이 주목적이며, 판매촉진 활동을 통한 고객에게 할인 혜택을 주어질 경우와 주어지지 않을 경우에 리뷰 평점을 연구하는 데 목적이 있다. 분석 결과로 본다면 평가 결과는 AUC 95% 수준이며, F1도 93% 정도이다. 결국 판매촉진 활동 유형 중 가치 부가 혜택이 리뷰 수와 리뷰 평점에 영향을 준다고 것을 확인할 수 있었으며, 주요 변인들이 리뷰와 리뷰 평점의 영향을 준다는 것도 확인할 수 있었다.