DOI QR코드

DOI QR Code

A multi-channel CNN based online review helpfulness prediction model

Multi-channel CNN 기반 온라인 리뷰 유용성 예측 모델 개발에 관한 연구

  • Li, Xinzhe (Department of Big Data Analytics, Kyung Hee University) ;
  • Yun, Hyorim (College of Hotel and Tourism School of Hospitality Management, Kyung Hee University) ;
  • Li, Qinglong (Department of Big Data Analytics, Kyung Hee University) ;
  • Kim, Jaekyeong (School Management & Department of Big Data Analytics, Kyung Hee University)
  • 이흠철 (경희대학교 빅데이터응용학과) ;
  • 윤효림 (경희대학교 호텔관광대학 Hospitality 경영학부) ;
  • 이청용 (경희대학교 빅데이터응용학과) ;
  • 김재경 (경희대학교 경영대학 & 빅데이터응용학과)
  • Received : 2022.06.01
  • Accepted : 2022.06.18
  • Published : 2022.06.30

Abstract

Online reviews play an essential role in the consumer's purchasing decision-making process, and thus, providing helpful and reliable reviews is essential to consumers. Previous online review helpfulness prediction studies mainly predicted review helpfulness based on the consistency of text and rating information of online reviews. However, there is a limitation in that representation capacity or review text and rating interaction. We propose a CNN-RHP model that effectively learns the interaction between review text and rating information to improve the limitations of previous studies. Multi-channel CNNs were applied to extract the semantic representation of the review text. We also converted rating into independent high-dimensional embedding vectors representing the same dimension as the text vector. The consistency between the review text and the rating information is learned based on element-wise operations between the review text and the star rating vector. To evaluate the performance of the proposed CNN-RHP model in this study, we used online reviews collected from Amazom.com. Experimental results show that the CNN-RHP model indicates excellent performance compared to several benchmark models. The results of this study can provide practical implications when providing services related to review helpfulness on online e-commerce platforms.

온라인 리뷰는 소비자의 구매 의사결정 과정에서 중요한 역할을 담당하고 있으므로 소비자에게 유용하고 신뢰성이 있는 리뷰를 제공하는 것이 중요하다. 기존의 온라인 리뷰 유용성 예측 관련 연구는 주로 온라인 리뷰의 텍스트와 평점 정보 간의 일관성을 바탕으로 리뷰 유용성을 예측하였다. 그러나 기존 연구는 평점 정보를 스칼라로 표현했기 때문에 표현 수용력이 제한적이거나 평점 정보와 리뷰 텍스트 정보와의 상호작용을 제한적으로 학습하는 한계가 존재한다. 본 연구에서는 기존 연구의 한계점을 보완하기 위해 리뷰 텍스트와 평점 정보 간의 상호작용을 효과적으로 학습할 수 있는 CNN-RHP(CNN based Review Helpfulness Prediction) 모델을 제안하였다. 먼저, 리뷰 텍스트의 의미론적 특성을 추출하기 위해 multi-channel CNN을 적용하였다. 다음으로, 평점 정보는 텍스트 특성과 동일한 차원을 나타내는 독립된 고차원 임베딩 특성 벡터로 변환하였다. 최종적으로 요소별(Element-wise) 연산을 통해 리뷰 텍스트와 평점 정보 간의 일관성을 학습하였다. 본 연구에서는 제안된 CNN-RHP 모델의 성능을 평가하기 위해 Amazom.com에서 수집된 온라인 소비자 리뷰를 사용하였다. 실험 결과, 본 연구에서 제안한 CNN-RHP 모델이 기존 연구에서 제안된 여러 모델과 비교했을 때 우수한 예측 성능을 나타내는 것을 확인하였다. 본 연구의 결과는 온라인 전자상거래 플랫폼에서 소비자들에게 리뷰 유용성 예측 서비스를 제공할 때 유의미한 시사점을 제공할 수 있다.

Keywords

Acknowledgement

본 논문은 교육부 및 한국연구재단 4단계 두뇌한국21 사업(4단계 BK21 사업)으로부터 지원받은 연구임.

References

  1. 이선영, 정남호, 양성병. (2019). 온라인 리뷰에서 이미지 효용성 결정요인에 관한 탐색적 연구: 음이항 모형 적용. 인터넷전자상거래연구, 19(1), 93-113.
  2. 이승우, 강경모, 이병현, 이청용, 김재경. (2022). 사용자의 정성적 선호도와 정량적 선호도를 고려하는 추천 시스템 성능 향상에 관한 연구. 경영과학, 39(1), 15-27.
  3. 이청용, 이병현, 이흠철, 김재경. (2021). CNN 기반 리뷰 유용성 점수 예측을 통한 개인화 추천 서비스 성능 향상에 관한 연구. 지능정보연구, 27(3), 29-56. https://doi.org/10.13088/JIIS.2021.27.3.029
  4. 박호연, 김경재. (2019). CNN-LSTM 조합모델을 이용한 영화리뷰 감성분석. 지능정보연구, 25(4), 141-154. https://doi.org/10.13088/jiis.2019.25.4.141
  5. 전민진, 황지원, 김종우. (2021). CNN 보조 손실을 이용한 차원 기반 감성 분석. 지능정보연구, 27(4), 1-22.
  6. Charrada, E. B. (2016). Which one to read? Factors influencing the usefulness of online reviews for RE. 2016 IEEE 24th International Requirements Engineering Conference Workshops, Beijing, China.
  7. Chen, H., Han, F. X., Niu, D., Liu, D., Lai, K., Wu, C., & Xu, Y. (2018). Mix: Multi-channel information crossing for text matching. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (ACM 2018), 110-119.
  8. Diaz, G. O., & Ng, V. (2018). Modeling and prediction of online product review helpfulness: a survey. Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (ACL 2018), 698-708.
  9. Dong, J., He, F., Guo, Y., & Zhang, H. (2020). A commodity review sentiment analysis based on BERT-CNN model. 2020 5th International Conference on Computer and Communication Systems, Coimbatore, India.
  10. Du, J., Rong, J., Wang, H., & Zhang, Y. (2021). Neighbor-aware review helpfulness prediction. Decision Support Systems, 148, 113581. https://doi.org/10.1016/j.dss.2021.113581
  11. Du, J., Zheng, L., He, J., Rong, J., Wang, H., & Zhang, Y. (2020). An interactive network for end-to-end review helpfulness modeling. Data Science and Engineering, 5(3), 261-279. https://doi.org/10.1007/s41019-020-00133-1
  12. Fan, M., Feng, Y., Sun, M., Li, P., Wang, H., & Wang, J. (2018). Multi-task neural learning architecture for end-to-end identification of helpful reviews. 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, Barcelona, Spain.
  13. Fang, B., Ye, Q., Kucukusta, D., & Law, R. (2016). Analysis of the perceived value of online tourism reviews: Influence of readability and reviewer characteristics. Tourism Management, 52, 498-506. https://doi.org/10.1016/j.tourman.2015.07.018
  14. Ghose, A., & Ipeirotis, P. G. (2010). Estimating the helpfulness and economic impact of product reviews: Mining text and reviewer characteristics. IEEE Transactions on Knowledge and Data Engineering, 23(10), 1498-1512. https://doi.org/10.1109/TKDE.2010.188
  15. Han, Q., Kou, Y., & Snaidauf, D. (2019). Experimental Evaluation of CNN Parameters for Text Categorization in Legal Document Review. 2019 IEEE International Conference on Big Data, Los Angeles, USA.
  16. He, X., Liao, L., Zhang, H., Nie, L., Hu, X., & Chua, T.-S. (2017). Neural collaborative filtering. Proceedings of the 26th International Conference on World Wide Web (WWW 2017), 173-182.
  17. Hoffait, A.-S., Ittoo, A., & Schyns, M. (2018). Assessing and predicting review helpfulness: Critical review. 29eme Conference Europeenne Sur La Recherche Operationnelle, Valence, Spain.
  18. Huang, A. H., Chen, K., Yen, D. C., & Tran, T. P. (2015). A study of factors that contribute to online review helpfulness. Computers in Human Behavior, 48, 17-27. https://doi.org/10.1016/j.chb.2015.01.010
  19. Jones, Q., Ravid, G., & Rafaeli, S. (2004). Information overload and the message dynamics of online interaction spaces: A theoretical model and empirical exploration. Information Systems Research, 15(2), 194-210. https://doi.org/10.1287/isre.1040.0023
  20. Kim, S.-M., Pantel, P., Chklovski, T., & Pennacchiotti, M. (2006). Automatically assessing review helpfulness. Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing (EMNLP 2006), 423-430.
  21. Kim, Y. (2014). Convolutional Neural Networks for Sentence Classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP 2014), 1746-1751.
  22. Kim, Y., Jernite, Y., Sontag, D., & Rush, A. M. (2016). Character-aware neural language models. Thirtieth AAAI Conference on Artificial Intelligence, Phoenix, USA.
  23. Li, Q., Li, X., Lee, B., & Kim, J. (2021). A hybrid CNN-based review helpfulness filtering model for improving e-commerce recommendation Service. Applied Sciences, 11(18), 8613. https://doi.org/10.3390/app11188613
  24. Liu, J., Cao, Y., Lin, C.-Y., Huang, Y., & Zhou, M. (2007). Low-quality product review detection in opinion summarization. Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL 2007), 334-342.
  25. Liu, Z., Yuan, B., & Ma, Y. (2021). A multi-task dual attention deep recommendation model using ratings and review helpfulness. Applied Intelligence, 52(5), 1-13.
  26. Malik, M., & Hussain, A. (2018). An analysis of review content and reviewer variables that contribute to review helpfulness. Information Processing & Management, 54(1), 88-104. https://doi.org/10.1016/j.ipm.2017.09.004
  27. Mitra, S., & Jenamani, M. (2021). Helpfulness of online consumer reviews: A multi-perspective approach. Information Processing & Management, 58(3), 102538. https://doi.org/10.1016/j.ipm.2021.102538
  28. Mohammad, A. H., Alwada'n, T., & Al-Momani, O. (2016). Arabic text categorization using support vector machine, Naive Bayes and neural network. GSTF Journal on Computing, 5(1), 1-8. https://doi.org/10.7603/s40601-016-0001-3
  29. Mudambi, S. M., & Schuff, D. (2010). Research note: What makes a helpful online review? A study of customer reviews on Amazon. com. MIS Quarterly, 34(1),185-200. https://doi.org/10.2307/20721420
  30. Park, D. H., Kim, H. K., Choi, I. Y., & Kim, J. K. (2012). A literature review and classification of recommender systems research. Expert Systems with Applications, 39(11), 10059-10072. https://doi.org/10.1016/j.eswa.2012.02.038
  31. Park, J., Gu, B., & Lee, H. (2012). The relationship between retailer-hosted and third-party hosted WOM sources and their influence on retailer sales. Electronic Commerce Research and Applications, 11(3), 253-261. https://doi.org/10.1016/j.elerap.2011.11.003
  32. Qu, X., Li, X., & Rose, J. R. (2018). Review helpfulness assessment based on convolutional neural network. arXiv preprint arXiv:1808.09016.
  33. Quaschning, S., Pandelaere, M., & Vermeir, I. (2015). When consistency matters: The effect of valence consistency on review helpfulness. Journal of Computer-Mediated Communication, 20(2), 136-152. https://doi.org/10.1111/jcc4.12106
  34. Salehan, M., & Kim, D. J. (2016). Predicting the performance of online consumer reviews: A sentiment mining approach to big data analytics. Decision Support Systems, 81, 30-40. https://doi.org/10.1016/j.dss.2015.10.006
  35. Saumya, S., Singh, J. P., & Dwivedi, Y. K. (2020). Predicting the helpfulness score of online reviews using convolutional neural network. Soft Computing, 24(15), 10989-11005. https://doi.org/10.1007/s00500-019-03851-5
  36. Siering, M., Muntermann, J., & Rajagopalan, B. (2018). Explaining and predicting online review helpfulness: The role of content and reviewer-related signals. Decision Support Systems, 108, 1-12. https://doi.org/10.1016/j.dss.2018.01.004
  37. Tay, W., Zhang, X., & Karimi, S. (2020). Beyond mean rating: Probabilistic aggregation of star ratings based on helpfulness. Journal of the Association for Information Science and Technology, 71(7), 784-799. https://doi.org/10.1002/asi.24297
  38. van Dinter, R., Catal, C., & Tekinerdogan, B. (2021). A Multi-Channel Convolutional Neural Network approach to automate the citation screening process. Applied Soft Computing, 112, 107765. https://doi.org/10.1016/j.asoc.2021.107765
  39. Yang, S., Yao, J., & Qazi, A. (2020). Does the review deserve more helpfulness when its title resembles the content? Locating helpful reviews by text mining. Information Processing & Management, 57(2), 102179. https://doi.org/10.1016/j.ipm.2019.102179
  40. Yang, Y., Yan, Y., Qiu, M., & Bao, F. (2015). Semantic analysis and helpfulness prediction of text for online product reviews. Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics (ACL 2015), 38-44
  41. Yin, D., Bond, S. D., & Zhang, H. (2014). Anxious or angry? Effects of discrete emotions on the perceived helpfulness of online reviews. MIS Quarterly, 38(2), 539-560. https://doi.org/10.25300/MISQ/2014/38.2.10
  42. Yin, D., Mitra, S., & Zhang, H. (2016). Research note-When do consumers value positive vs. negative reviews? An empirical investigation of confirmation bias in online word of mouth. Information Systems Research, 27(1), 131-144. https://doi.org/10.1287/isre.2015.0617