• Title/Summary/Keyword: 리만해법

Search Result 11, Processing Time 0.03 seconds

EXACT RIEMANN SOLVERS FOR COMPRESSIBLE TWO-PHASE SHOCK TUBE PROBLEMS (압축성 이상(二相) 충격파관 문제에 대한 엄밀 리만해법)

  • Yeom, Geum-Su;Chang, Keun-Shik
    • Journal of computational fluids engineering
    • /
    • v.15 no.3
    • /
    • pp.73-80
    • /
    • 2010
  • In this paper, we present the exact Riemann solver for the compressible liquid-gas two-phase shock tube problems. We hereby consider both isentropic and non-isentropic two-phase flows. The shock tube has a diaphragm in the mid-section which separates the liquid medium on the left and the gas medium on the right. By rupturing the diaphragm, various waves are observed on the phasic field variables such as pressure, density, temperature and void fraction in the form of rarefaction wave, shock wave and material interface (contact discontinuity). Both phases are treated as compressible fluids using the linearized equation of state or the stiffened-gas equation of state. We solve several shock tube problems made of a high/low pressure in the liquid and a low/high pressure in the gas. The wave propagations are well resolved by the exact Riemann solutions.

Real Gas Speeds of Sound and Approximate Riemann Solver (실제 기체 음속과 근사 리만 해법)

  • Moon, Seong-Young;Han, Sang-Hoon;Choi, Jeong-Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.1
    • /
    • pp.1-11
    • /
    • 2010
  • The definition of the speed of sound is reexamined since it is crucial in the numerical analysis of compressible real gas flows. The thermodynamic speed of sound (TSS), $a_{th}$, and the characteristic speed of sound (CSS), $a_{ch}$, are derived using generalized equation of state (EOS). It is found that the real gas EOS, for which pressure is not linearly dependent on density and temperature, results in slightly different TSS and CSS. in this formalism, Roe's approximate Riemann solver was derived again with corrections for real gases. The results show a little difference when the speeds of sound are applied to the Roe's scheme and Advection Upstream Splitting Method (AUSM) scheme, but a numerical instability is observed for a special case using AUSM scheme. It is considered reasonable to use of CSS for the mathematical consistency of the numerical schemes. The approach is applicable to multi-dimensional problems consistently.

Exact solver of Saint-Venant system with discontinuous geometry (불연속 지형조건에 대한 Saint-Venant 방정식의 정해법)

  • Jung, Jaeyoung;Hwang, Jin Hwan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.256-256
    • /
    • 2021
  • Saint-Venant 방정식은 수평규모가 수심규모보다 큰 천수흐름을 기술하는 수리동역학 모형으로 지난 수십년간 공학적 분야에서 널리 이용되어 왔다. 최근에도 기후변화에 따른 도시 홍수의 위기 증대로 홍수위기관리의 관심이 높아짐에 따라 홍수파(flood wave), 도시침수(urban inundation), 돌발홍수(flash flood) 등의 신속한 예측을 위한 Saint-Venant 방정식의 연구가 활발히 진행되고 있다. 그러나 도시와 같은 인공구조물이 즐비한 상황에서 천수흐름을 해석하는 고전적인 수치해법들은 다양한 불연속 지형들의 존재로 인하여 불안정하며 지배방정식의 정해로 수치해가 잘 수렴하지 않는 문제가 있다. 지난 수년간 이를 해결하기 위해 불연속한 지형을 안정적으로 해결할 수 있는 수치기법의 연구가 진행되어 왔으나, 정해로의 수렴성, 정확성에 관하여 연구가 부족한 실정이다. 본 연구는 수치해법의 주요 구조를 구성하는 Saint-Venant 방정식의 불연속한 지형조건에 대한 리만 문제의 정해를 연구하였다. 쌍곡선형 시스템의 특징을 고려하여 요소파들(elementary waves)의 공식을 유도하였는데, 질량과 에너지의 보존법칙에 위배되지 않으며 운동량이송부의 비선형성과 지형의 불연속에 의한 비엄격성을 고려할 수 있는 조건을 제시하였다. 또한, 유도된 요소파들을 바탕으로 L-M & R-M 커브이론(Han et al. 2014)을 사용할 수 있는 조건과 당위성을 증명하였고, 이를 바탕으로 Saint-Venant 방정식의 정해법을 구성하였다. 리만문제의 다양한 초기조건들을 바탕으로 모든 경우의 정해 구조를 조사하였고, 이를 통해 불연속 지형에 대한 Saint-Venant 지배방정식의 정해가 다수해를 갖을 수 있음을 보였으며, 이를 근사할 수 있는 수치기법의 전략을 소개하였다.

  • PDF

Dam-Break and Transcritical Flow Simulation of 1D Shallow Water Equations with Discontinuous Galerkin Finite Element Method (불연속 갤러킨 유한요소법을 이용한 1차원 천수방정식의 댐 붕괴류 및 천이류 해석)

  • Yun, Kwang Hee;Lee, Haegyun;Lee, Namjoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.5
    • /
    • pp.1383-1393
    • /
    • 2014
  • Recently, with rapid improvement in computer hardware and theoretical development in the field of computational fluid dynamics, high-order accurate schemes also have been applied in the realm of computational hydraulics. In this study, numerical solutions of 1D shallow water equations are presented with TVD Runge-Kutta discontinuous Galerkin (RKDG) finite element method. The transcritical flows such as dam-break flows due to instant dam failure and transcritical flow with bottom elevation change were studied. As a formulation of approximate Riemann solver, the local Lax-Friedrichs (LLF), Roe, HLL flux schemes were employed and MUSCL slope limiter was used to eliminate unnecessary numerical oscillations. The developed model was applied to 1D dam break and transcritical flow. The results were compared to the exact solutions and experimental data.

BGK 수치기법을 이용한 로켓 노즐 내의 유동장 해석

  • 신동신;이재성
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.16-16
    • /
    • 2000
  • 충격파를 포함하는 초음속 유동을 해석하는 수치해법 중에서 많이 사용되어진 것은 엄밀 및 근사 리만 해법과 플럭스 분할 기법들로서 이들은 Euler 방정식에 기반을 두고 선형 또는 비선형파의 상호작용을 풍상 차분법으로 기술하는 방법들이다. 이러한 수치기법들은 과거 광범위하게 사용되어 왔으나 최근 여러 가지 단점이 발견되었다. 이와 같은 문제점을 극복하고자 입자의 통계적인 운동을 기술하는 기체 운동론에 근거하여 BGK 수치기법이 제시되었다. 이는 비충돌 볼츠만 방정식으로부터 입자의 수준에서 플럭스 분할 기법 형태의 풍상차분법을 구현하는 것으로 볼츠만 방정식의 충돌항을 BGK 모델로 대치하고 이것의 적분해로부터 수치 플럭스를 구한다. 이 수치기법은 기존의 리만해법에 비하여 수치적으로나 물리적으로 매우 타당한 성질인 강건성, 정확성, 엔트로피 조건, 양수보존성 등을 가지고 있음이 밝혀졌다. 이와 같은 수치기법을 사용하여 로켓 노즐 내의 아음속, 천이음속, 초음속에서의 유동장 해석을 위한 프로그램을 작성하였다. 시간 적분에 대하여는 정상 상태의 계산을 위하여 내재적 시간 적분 방법을 사용하였으며, 공간 이산화 방법으로는 임의의 제어체적에 대하여 적분형 보존 방정식을 적용하는 유한 체적법을 사용하였다. 초음속 입구 유동과 출구에서 초음속과 저음속 유동의 두가지 경우를 고려하여 얻은 결과를 기존의 연구 결과와 비교하여 본 결과 잘 일치하였다. 입구 유동이 저음속이고 출구 유동이 초음속인 경우에 대하여도 해석결과가 실험결과와 잘 일치하였다. 상대적으로 낮은 온도, 압력 조건과 높은 온도, 압력 조건을 가지는 고체 로켓 모터 노즐 내의 유동을 해석하였다. 이들 해석 결과를 전압, 전온도로 표준화시킨 결과 서로 일치하였으며, 파라서 저온, 저압에서 얻은 결과도 표준화시킬 경우, 고온, 고압에서도 사용될 수 있음을 알 수 있었다.의 영향에 초점을 맞추었다.다고 판단되며 배기 가스 자체에 대기 공기중에 함유되어 있던 습기가 얼어붙는(Icing화) 문제가 발생하기 때문에 배기가스의 Icing을 방지하기 위하여 압축기 끝단에서 공기를 추출하여 배기부분에 송출할 필요성이 있는 것으로 판단되었다. 출구가스의 기체 유동속도가 매우 빠르므로 (100-l10m.sec) 이를 완화하기 위한 디퓨저의 설계가 요구된다고 판단된다. 또 연소기 후방에 물을 주입하는 경우 열교환기 및 기타 부분품에 발생할 수 있는 부식 및 열교환 효율 저하도 간과할 수 없는 문제로 파악되었다. 이러한 기술적 문제가 적절히 해결되는 경우 비활성 가스 제너레이터는 민수용으로는 대형 빌딩, 산림, 유조선 등의 화재에 매우 적절히 사용되어 질 수 있을 뿐 아니라 군사적으로도 군사작전 중 및 공군 기지의 화재 그리고 지하벙커에 설치되어 있는 고급 첨단 군사 장비 등의 화재 뿐 아니라 대간첩작전 등에 효과적으로 활용될 수 있을 것으로 판단된다.가 작으며, 본 연소관에 충전된 RDX/AP계 추진제의 경우 추진제의 습기투과에 의한 추진제 물성 변화는 미미한 것으로 나타났다.의 향상으로, 음성개선에 효과적이라고 사료되었으며, 이 방법이 편측 성대마비 환자의 효과적인 음성개선의 치료방법의 하나로 응용될 수 있으리라 생각된다..7%), 혈액투석, 식도부분절제술 및 위루술·위회장문합술을 시행한 경우가 각 1례(2.9%)씩이었다. 13) 심각한 합병증은 9례(26.5%)에서 보였는데 그중 식도협착증이 6례(17.6%), 급성신부전증 1례(2.9%), 종격동기흉과 폐염이 병발한 경우와 폐염이 각 1례(2.9%)였다. 14) 식도경 시행회수는 1회가 17례(54.8%), 2회가 9례(29.0%), 3회 이상이 5례(16.1%)였다.EX>$IC_{50}$/ 값이 210 $\mu\textrm{g}$<

  • PDF

Treatment of the Bed Slope Source Term for 2-Dimensional Numerical Model Using Quasi-steady Wave Propagation Algorithm (Quasi-steady Wave Propagation 알고리듬을 이용한 2차원 수치모형의 하상경사항 처리)

  • Kim, Tae-Hyung;Han, Kun-Yeun;Kim, Byung-Hyun
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.2
    • /
    • pp.145-156
    • /
    • 2011
  • Two dimensional numerical model of high-order accuracy is developed to analyze complex flow including transition flow, discontinuous flow, and wave propagation to dry bed emerging at natural river flow. The bed slope term of two dimensional shallow water equation consisting of integral conservation law is treated efficiently by applying quasi-steady wave propagation scheme. In order to apply Finite Volume Method using Fractional Step Method, MUSCL scheme is applied based on HLL Riemann solver, which is second-order accurate in time and space. The TVD method is applied to prevent numerical oscillations in the second-order accurate scheme. The developed model is verified by comparing observed data of two dimenstional levee breach experiment and dam breach experiment containing structure at lower section of channel. Also effect of the source term is verified by applying to dam breach experiment considering the adverse slope channel.

Numerical Analysis for Two-Dimensional Compressible and Two-Phase Flow Fields of Air-Water in Eulerian Grid Framework (2차원 압축공기-물의 압축성 이상 유동 수치 해석)

  • Park, Chan-Wook;Lee, Sung-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.6
    • /
    • pp.429-445
    • /
    • 2008
  • Two-phase compressible flow fields of air-water are investigated numerically in the fixed Eulerian grid framework. The phase interface is captured via volume fractions of each phase. A way to model two phase compressible flows as a single phase one is found based on an equivalent equation of states of Tait's type for a multiphase cell. The equivalent single phase field is discretized using the Roe‘s approximate Riemann solver. Two approaches are tried to suppress the pressure oscillation phenomena at the phase interface, a passive advection of volume fraction and a direct pressure relaxation with the compressible form of volume fraction equation. The direct pressure equalizing method suppresses pressure oscillation successfully and generates sharp discontinuities, transmitting and reflecting acoustic waves naturally at the phase interface. In discretizing the compressible form of volume fraction equation, phase interfaces are geometrically reconstructed to minimize the numerical diffusion of volume fraction and relevant variables. The motion of a projectile in a water-filled tube which is fired by the release of highly pressurized air is simulated presuming the flow field as a two dimensional one, and several design factors affecting the projectile movement are investigated.

구대칭 일반상대론적 유체역학 코드의 개발

  • Park, Dong-Ho
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.75.1-75.1
    • /
    • 2013
  • 자체의 중력 효과를 고려하는 구대칭 완전 유체 전산모사 연구를 위해 일반상대론적 유체역학 코드를 이 분야 연구자들을 위한 공개용으로 개발하였다. 이 코드는 3+1 ADM(Arnowitt-Deser-Misner) 공식과 등방 공간 좌표를 사용하였다. 시공간 기하를 구하기 위해 극한값 썰기 (maximal slicing) 조건과 함께 세 개의 제한 방정식을 풀었고, 시공간을 채우는 물질인 유체는 근사 리만 해법을 사용한 HRSC (high resolution shock capturing) 기법으로 오일러 관찰자 시점에서 풀었다. 이 코드의 수렴성과 정확성을 검증하기 위해 상대론적인 구대칭 충격파 비교 분석, 블랙홀로 빨려 들어가는 상대론적 구대칭 강착, TOV(Tolman-Oppenheimer-Volkoff) 별 및 OS (Oppenheimer-Snyder) 붕괴 코드 테스트를 수행하였다. 특히, 이 코드의 동적 진화 테스트인 OS 붕괴의 경우 해석적인 해와 결과를 비교하기 위하여 좌표변환을 수치 계산으로 수행하였다. 아인슈타인의 일반상대성 이론을 넘어서는 변형된 중력이론 중 하나로 최근 제시된 EiBI(Eddington-inspired Born-Infeld) 이론에서 TOV 별의 해가 일반상대성 이론과 어떠한 차이를 보이는지 살펴 보았고, 그 이론에서도 물질이 붕괴하여 블랙홀을 만드는 경우 특이점이 형성되는지 고찰해 보았다.

  • PDF

Numerical Study on Compressible Multiphase Flow Using Diffuse Interface Method (Diffuse Interface Method를 이용한 압축성 다상 유동에 관한 수치적 연구)

  • Yoo, Young-Lin;Sung, Hong-Gye
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.2
    • /
    • pp.15-22
    • /
    • 2018
  • A compressible multiphase flow was investigated using a DIM consisting of seven equations, including the fifth-order MLP and a modified HLLC Riemann solver to achieve a precise interface structure of liquid and gas. The numerical methods were verified by comparing the flow structures of the high-pressure water and low-pressure air in the shock tube. A 2D air-helium shock-bubble interaction at the incident shock wave condition (Mach number 1.22) was numerically solved and verified using the experimental results.

Extension of Compressible Flow Solver to Incompressible Flow Analysis (비압축성 유동 해석을 위한 압축성 유동 해석자 확장)

  • Kim, Donguk;Kim, Minsoo;Lee, Seungsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.6
    • /
    • pp.449-456
    • /
    • 2021
  • In this paper, we present a strategy to extend solution capability of an existing low Mach number preconditioned compressible solver to incompressible flows with a little modification. To this end, the energy equation that is of the same form of the total energy equation of compressible flows is used. The energy equation is obtained by a linear combination of the thermal energy equation, the continuity equation and the mechanical energy equation. Subsequently, a modified artificial compressibility method in conjunction with a time marching technique is applied to these incompressible governing equations for steady flow solutions. It is found that the Roe average of the common governing equations is equally valid for both the compressible and incompressible flow conditions. The extension of an existing compressible solver to incompressible flows does not affect the original compressible flow analysis. Validity for incompressible flow analysis of the extended solver is examined for various inviscid, laminar and turbulent flows.