• Title/Summary/Keyword: 로터형상

Search Result 169, Processing Time 0.021 seconds

헬리콥터 복합재료 힌지없는 허브 부품 및 패들형 블레이드 설계/해석

  • Kim, Deog-Kwan;Hong, Dan-Bi;Lee, Myeong-Kyu;Joo, Gene
    • Aerospace Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.33-44
    • /
    • 2003
  • This paper describes the design and analysis technology of composite flexure and composite paddle-type blade which are all key technologies on hingeless rotor system. Through replacing the existing metal or engineering plastic flexure part with composite part, Several required structural analysis were accomplished, which are static analysis by using NASTRAN and dynamic analysis by using FLIGHTLAB. The dynamic characteristics of composite hingeless hub attached with paddle-type blade was also investigated. Further more, small-scaled paddle-type blade was designed using froude scaled properties of existing full size blade. Through this design procedure of composite paddle-type blade, the structural design method was achieved. These results will be applied to accomplishing current project named as "the development of next-generation helicopter rotor system."

  • PDF

Aerodynamic Optimization of Helicopter Blade Planform (II): Applications to Design Optimization (헬리콥터 블레이드 플랜폼 공력 최적설계(II): 최적설계 기법의 적용)

  • Kim, Chang-Joo;Park, Soo-Hyung;Shin, Ki-Cheol;Kim, Seung-Ho;Chung, Ki-Hoon;Kim, Seung-Bum
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.11
    • /
    • pp.1060-1066
    • /
    • 2010
  • This paper focuses on the application of the proposed aerodynamic optimization techniques to design the blade planform of helicopter rotors. The design problems are formulated to maximize the hover figure of merit and the equivalent lift-to-drag ratio for high forward speed by optimally distributing airfoils, twist, and chord along the blade span. The numerical characters are investigated by solving various design problems. The advantages and limitations with the present design approach and the present modeling features for performance prediction are discussed. The recommendations for the required model refinements to get more accurate optimal configurations are addressed as future research areas.

A Study on Development for Wind Turbine Rotor Hub using Design of Shape Optimization (형상 최적설계법을 이용한 풍력발전기 로터 허브 개발에 관한 연구)

  • Kim, Young-Il;Moon, Sung-Young;Lee, Ji-Hyun;Lee, Yun-Sung;Moon, Byung-Young
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.3
    • /
    • pp.59-64
    • /
    • 2011
  • Wind turbine frame will be required to be longer, lighter, more reliable and more consistent. Therefore it is necessary to lose weight of the wind turbine hub. Light-weight Design of a wind turbine is required to be at least 20 years. Therefore, this paper investigates the development for wind turbine rotor hub using design of topology optimization. The model is a pitch regulated wind turbine with three rotor blades where the main frame is made of nodular iron. For optimization, calculating stresses based on displacements and based on these data to carry out a verification of static and fatigue strength carried out. For this verification, two kind of analysis is used. One is static analysis and the other is fatigue analysis. Then the rotor hub of wind turbine frame is optimized using topology method.

A Study on the Influence of Helicopter Main Rotor Inflow Model upon Launched Rocket Trajectory and Safe Launch Envelope (헬리콥터 유입류 모델에 따른 발사된 로켓의 비행궤적 영향성 및 안전발사 기동영역 해석 연구)

  • Yang, Chang Deok;Jung, Dong Woo
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.3
    • /
    • pp.70-77
    • /
    • 2019
  • This study presents the numerical investigation of the trajectory of rocket launched from a helicopter. The nonlinear mathematical model of armed configuration of UH-60 helicopter was developed while Hydra 70 unguided rocket was modeled to simulate the rocket behavior. The effects of various inflow models on the launched rocket trajectory are obtained. Similarly, rocket launch simulation was performed to determine the unsafe flight maneuver condition where the rocket trajectory is critically close to the helicopter main rotor tip path plane.

Ground Vibration Tests of SmartUAV Airframe Structure (스마트무인기 기체구조물 지상진동시험)

  • Jeon, Byoung-Hee;Kang, Hui-Won;Lee, Jung-Jin;Lee, Young-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.5
    • /
    • pp.482-489
    • /
    • 2010
  • This paper describes the test procedure, instrumentation, verification methodology and the results of the ground vibration test(GVT) and force vibration test(FVT) of the SmartUAV aircraft to estimate experimentally dynamic characteristics of the aircraft. Bungee cords are used to emulate free-free boundary conditions of the test aircraft. The SmartUAV is excited by three shakers and one-hundred frequency response functions(FRF's) is measured. The FRF's are reduced and analyzed to identify the dynamics parameters of the SmartUAV. To extract modal parameters of the SmartUAV such as, natural frequencies and damping ratios, the poly-reference least square complex exponential method is used in the time domain. The mode shape coefficients are estimated with the least squares frequency domain method to identify the vibration modes. The FVT was performed by fixed sine frequency with three shakers on the x, y and z direction and vibration characteristics of structures and detail equipments are measured.

Numerical study to Determine Optimal Design of 500W Darrieus-type Vertical Axis Wind Turbine (500W 급 다리우스형 풍력발전기의 최적설계를 위한 수치적 연구)

  • Lee, Young Tae;Lim, Hee Chang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.8
    • /
    • pp.693-702
    • /
    • 2015
  • This paper presents the performance characteristics of a Darrieus-type vertical-axis wind turbine (VAWT) with National Advisory Committee for Aeronautics (NACA) airfoil blades. To estimate the optimum shape of the Darrieus-type wind turbine in accordance with various design parameters, we examine the aerodynamic characteristics and separated flow occurring in the vicinity of the blade, the interaction between the flow and blade, and the torque and power characteristics that are derived from it. We consider several parameters (chord length, rotor diameter, pitch angle, and helical angle) to determine the optimum shape design and characteristics of the interaction with the ambient flow. From our results, rotors with high solidity have a high power coefficient in the low tip-speed ratio (TSR) range. On the contrary, in the low TSR range, rotors with low solidity have a high power coefficient. When the pitch angle at which the airfoil is directed inward equals $-2^{\circ}$ and the helical angle equals $0^{\circ}$, the Darrieus-type VAWT generates maximum power.

Analysis of Planting Trajectory of Rice Planting Machine for Close Planting Seeding (밀식파종을 위한 이앙기의 식부 궤적 분석)

  • Jo, Jae Min;Choi, Dug Soon;Kim, Byung Do;Kim, Hyeon Tae
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.74-74
    • /
    • 2017
  • 밀식파종 묘 이앙 시스템은 벼농사 생력화를 위한 재배법으로 비용 및 노동력을 획기적으로 줄일 수 있어 시간과 잉여 공간의 유효 활용을 통해 영농 규모의 확대로 인한 농업의 경쟁력을 높일 수 있다. 하지만 밀식 파종한 육묘를 관행과 동일한 1개 소당 3~4주 이앙 가능한 식부부 개발은 미흡한 실정이다. 밀식 파종한 육묘를 기존 이앙기로 이앙작업을 할 경우, 1개 소당 이앙되는 양이 많아져, 벼 생육을 저하 시키는 요인이 된다. 이러한 부분을 해결하기 위해서는 이앙 작업에 직접적으로 영향을 주는 이앙기식부부의 로터케이스, 이앙암을 분석하여 밀식파종 묘에 적용할 수 있는 기술이 필요한 실정이다. 본 연구에서는 식부부의 로터케이스, 이앙암을 3D 스캐너를 활용하여 스캐닝 작업을 한 뒤 역설계를 통하여 도면화 작업을 실시하여 식부부 궤적 분석을 실시하였다. 분석은 다물체 동역학 해석 프로그램인 Recurdyn(V8R4, Functionbay)을 활용하여 진행하였다. 분석결과, 식부부에 위치하는 이앙집게의 형상 및 로터케이스의 기어 배열에 따라 식부부가 형성하는 궤적의 형태가 달라지는 것을 확인 할 수 있었다. 이러한 부분은 밀식파종 묘에 적합한 궤적 분석 및 현장 필드 실험에 필요한 기초자료로 활용하고자 한다.

  • PDF

Papers : Implicit Formulation of Rotor Aeromechanic Equations for Helicopter Flight Simulation (논문 : 헬리콥터 비행 시뮬레이션을 위한 로터운동방정식 유도)

  • Kim, Chang-Ju
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.3
    • /
    • pp.8-16
    • /
    • 2002
  • The implicit formulation of rotor dynamics for helicopter flight simulation has been derived and and presented. The generalized vector kinematics regarding the relative motion between coordinates were expressed as a unified matrix operation and applied to get the inertial velocities and accelerations at arbitaty rotor blade span position. Based on these results the rotor aeromechanic equations for flapping dynamics, lead-lag dynamics and torque dynamics were formulated as an implicit form. Spatial integration methods of rotor dynamic equations along blade span and the expanded applicability of the present implicit formulations for arbitrary hings geometry and hinge sequences have been investigated. Time integration methods for present DAE(Differential Algebraic Equation) to calculate dynamic response calculation are recommenaded as future works.

Improvement for Vibration and Noise Characteristics of Single Phase Induction Motor using Concentrated Winding (집중권 방식 단상 유도기의 진동 및 소음 특성 개선)

  • Chae, M.G.;Jung, T.U.;Yun, C.H.;Cha, H.R.;Kim, H.M.;Kim, J.C.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.803-804
    • /
    • 2006
  • 우리는 이전 논문을 통해 Air blower용 모터에서 널리 사용되고 있는 단상 유도기를 기존의 분포 권선 방식에서 벗어나 집중 권선 방식을 사용하여 설계한 결과 생산 공정의 단계를 줄이고 많은 생산 비용을 줄일 수 있었다. 또한 집중 권선형에서 발생할 수 있는 고조파 문제를 로터의 skew와 overlap 권선 방식을 이용하여 해결 할 수 있음을 증명하였다. 그러나 이러한 이점에도 불구하고 시제품의 특성을 측정한 결과 집중 권선형 모터의 자계 불균형 때문에 기존 분포권 모터에 비해 소음과 진동 특성이 좋지 않은 결과를 보였다. 이에 본 논문에서는 소음과 진동 특성을 고려하여 기존의 기동 및 정격 토크 특성을 유지하면서 토크 리플을 저감할 수 있는 방법을 로터의 Skew 각도 영향, 권선 사양 및 스테이터 및 로터 형상 등을 고려하여 새롭게 설계하였고 그 결과를 제시하였다.

  • PDF

Design Modification of Airframe Shape for Ultra Light Quad-Rotor Development (초소형 쿼드로터 개발을 위한 기체형상 설계변경)

  • Park, Dae-Jin;Lee, Sangchul;Park, Saeng-Jin;Song, Tae-Hun
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.25 no.4
    • /
    • pp.44-51
    • /
    • 2017
  • An ultra light quad-rotor is utilized in various areas for military and commercial purpose. Especially, the airframe shape is designed with various airframe size, weight and purpose. In this paper, the initial airframe shape of the quad-rotor was designed and manufactured. Flight test was conducted for the quad-rotor. The design modification of airframe shape was conducted to meet design requirement. By changing design, weight of airframe structure was reduced and payloads were placed to the best position. By reinforcing ribs and reducing vehicle's legs, the durability of airframe structure was enhanced.