• Title/Summary/Keyword: 로봇 위치 제어

Search Result 724, Processing Time 0.028 seconds

Development of Remote Control Robot-ship for Measuring Water Depth (원격수심측정을 위한 로봇시스템의 개발)

  • Choi, Byoung-Gil;Cho, Kwang-Hee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.23 no.4
    • /
    • pp.409-417
    • /
    • 2005
  • This study is aimed to develop a remote control robot-ship system using wireless communication and DGPS, which it is an automatic system for measuring exact depth and bed topography of reservoir or dam. Robot-ship is equipped with GPS and echosounder, and it is controled remotely using wireless internet. Robot-ship is consist of frame, each module and control board. Control segment is consisted of a processing system for positioning data and remote control system. A wireless communication system is developed which can communicate interactively between robot-ship and control segment, and it is developed in two channel system of RF modem and wireless internet. The robot-ship could be used acquire economically and exactly the water depth and bed topography of reservoirs, dams, rivers and so on.

Localization of Mobile Robot using Active Landmark (능동형 인공표지를 이용한 이동로봇의 위치 인식)

  • Lee, Jae-Kyung;Park, Young-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.1
    • /
    • pp.64-69
    • /
    • 2008
  • In order that a mobile robot can perform tasks in unknown environment localization of a mobile robot is essential task. In this paper, a new localization method for a mobile robot using an active landmark is proposed, which is very simple to implement. The landmark has a LED which can be controlled by a mobile robot via wireless communication. CCD camera gets two images of the landmark, one of which is with LED off and the other is with LED on. Because the landmark can be detected by using the difference image of the two images, detection time can be minimized. By using the characteristic points of the landmark, localization can be performed simply. A series of experiments are performed to evaluate the proposed method and the experimental results show that the proposed method can be applicable to the localization of a mobile robot.

Design of an Action Selector for Soccer Robot Systems Using Multilayer Neural Networks (다층신경회로망을 이용한 축구 로봇시스템의 행동선택기 설계)

  • Son, Chang-Woo;Kim, Do-Hyun;Ahn, Hyun-Sik
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.658-660
    • /
    • 1999
  • 본 논문에서는 축구로봇 시스템에서 상위 레벨 제어기에 해당하는 행동선택기를 다층신경회로망을 이용하여 설계한다. 축구로봇 시스템에서 로봇의 속도가 빠른 상태에서 제어가 가능하도록 로봇의 행동레벨을 설정하고 주어진 동적 상황에 대해 여러 가지 상황변수를 정의하여, 각 상황에 가장 효율적이며 최적의 행동을 선택하도록 한다. 각 로봇이 목표점으로 이동할 때 어떠한 행동을 선택하여 어떻게 움직이느냐에 따라 로봇은 같은 위치에서 목표점을 이동하더라도 이동경로가 달라진다. 따라서, 로봇축구 경기 상황을 나타내는 상황 변수들을 입력으로 하는 다층신경회로망을 사용하여 출력으로 행동을 판단하여 실행하는 알고리즘을 제안하고 그를 위한 하드웨어와 시뮬레이터 도구를 제작한다. 역전파 알고리즘을 통해 신경망을 학습하고 학습된 데이터를 실험에 적용한다.

  • PDF

Placement of actuator for efficient modal control (효율적 모우드 제어를 위한 구동기 위치 결정법)

  • 노현석;박영진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.47-51
    • /
    • 1993
  • A method of finding the optimal actuator location for efficient control of the modes of interest is presented. The proposed approach relies on certain quantitive measure of degree of controllability based on the controllability grammian. This measure proves to be useful for regulating problem of the undamped system and can be extended to cover the tracking problem of the viscous damped system. The example of the uniform cantilever beam is given to verify the effectiveness of the method.

  • PDF

Development of controller for anti-swing and position of crane (크레인의 Anti-Swing 및 위치 제어기의 개발)

  • 정승현;권판조;이달해
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.277-281
    • /
    • 1996
  • The roof crane system is used for transporting a variable load to a target position. At this time, the goal of crane system is transporting to a goal position as soon as possible with no rope oscillation. Generally crane is operated by expert's knowledge, but recently automatic control with high speed and rapid transportation is required. In this thesis we developed fuzzy controller of crane which has simplified expert's knowledge base for anti-swing and rapid tansportation to goal position.

  • PDF

Precise position control of piezoelectric actuators considering input frequency variance (입력주파수 변화특성을 고려한 압전구동기의 정밀위치제어)

  • 송재욱;김호상;이효정
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1052-1055
    • /
    • 1996
  • Piezoelectric actuator is widely used in precision positioning applications due to its excellent positioning resolution. However, serious hysteresis nonlinearity of the actuator deteriorates its precise positioning capability. Evenworse, its hysteresis nonlinearity changes as the actuator input frequency varies. In this study, a simple feedforward scheme is proposed and tested through experiments for precision position control when the variance of the system input frequency is significant.

  • PDF

High performance velocity and position controller for spindle motor (스핀들용 유도 전동기 고성능 속도 및 위치 제어기)

  • 임충혁;유준혁;김동일;김성권
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.648-651
    • /
    • 1996
  • Samsung Electronics has developed high performance velocity and position controller for induction motors, and succeeded in mass production for the first time in Korea. Dynamic performance and final control accuracy of the controller are equivalent to those of AC servo motor controller. At present, we adopted the controller as spindle motor drive for Samsung CNC systems, and expect its wide use in industry as general purpose velocity and position controller for induction motor.

  • PDF

Speed and position control of the AC motor using variable structure controller with disturbance observer (외란 관측자와 가변구조제어기를 이용한 AC 서보모터의 속도 및 위치 제어)

  • 은용순;김광수;조동일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.652-655
    • /
    • 1996
  • This paper develops an AC motor controller for applications. The AC motor controller is designed based on the variable structure control method and a variable structure disturbance observer is added to reduce the effects of exogenous disturbances. The designed controller is installed on the z-axis of a CNC machining center and milling experiments were performed. The results show improved performance on both position and speed tracking, when compared to the factory-designed servo controller.

  • PDF

A study on position control of wheeled mobile robot using the inertial navigation system (관성항법시스템을 이용한 구륜 이동 로보트의 위치제어에 관한 연구)

  • 박붕렬;김기열;김원규;박종국
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1144-1148
    • /
    • 1996
  • This paper presents WMR modelling and path tracking algorithm using Inertial Navigation System. The error models of gyroscope and accelerometers in INS are derived by Gauss-Newton method which is nonlinear regression model. Then, to test availability of error model, we pursue the fitness diagnosis about probability characteristic for real data and estimated data. Performance of inertial sensor with error model and Kalman filter is pursued by comparing with one without them. The computer simulation shows that position error remarkably decrease when error compensation is applied.

  • PDF

A study on the position control of an electro-hydraulic servomechanism using variable structure system (가변구조를 이용한 전기-유압서어보계의 위치제어에 관한 연구)

  • 허순영;권기수;하석훈;이진걸
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.299-304
    • /
    • 1988
  • This paper describes the application of the variable structure control(VSC) concept for the position control of electro-hydraulic servomtor system. The basic philosopy of VSC is that the structure of the feedback control is altered as the state crosses discontinuity surfaces in the state surface with the result that certain desirable properties are achieved. The switching of the control function yields total(or selective) invariance to system parameter variations and disturbances, and closed loop eigen value placement in time-varing and uncertain systems.

  • PDF