• Title/Summary/Keyword: 로봇 동역학

Search Result 113, Processing Time 0.029 seconds

Extended Operational Space Formulation for the Kinematics, Dynamics, and Control of the Robot Manipulators with Redundancy (여유자유도 로봇의 기구학, 동역학 및 제어를 위한 확장실공간 해석)

  • 장평훈;박기철;김승호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3253-3269
    • /
    • 1994
  • In this paper a new concept, named the Extended Operational Space Formulation, has been proposed for the effective analysis and real-time control of the robot manipulators with kinematic redundancy. The extended operational space consists of operational space and optimal null space. The operational space is used to describe robot end-effector motion; whereas the optimal null space, defined as the target space of the self motion manifold, is used to express the self motion for the secondary tasks. Based upon the proposed formulation, the kinematics, statics, and dynamics of redundant robots have been analyzed, and an efficient control algorithm has been proposed. Using this algorithm, one can optimize a performance measure while tracking a desired end-effector trajectory with a better computational efficiency than the conventional methods. The effective ness of the proposed method has been demonstrated with simulations.

A study on design, experiment control of the waterproof robot arm (방수형 로봇팔의 설계, 실험 및 제어 연구)

  • Ha, Jihoon;Joo, Youngdo;Kim, Donghee;Kim, Joon-Young;Choi, Hyeung-Sik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.6
    • /
    • pp.648-657
    • /
    • 2014
  • This paper is about the study on a newly developed small waterproofed 4-axis robot arm and the analysis of its kinematics and dynamics. The structure of robot arm is designed to have Pitch-Pitch-Pitch-Yaw joint motion for inspection using a camera on itself and the joint actuator driving capacity are selected and the joint actuators are designed and test for 10m waterproofness. The closed-form solution for the robot arm is derived through the forward and inverse kinematics analysis. Also, the dynamics model equation including the damping force due to the mechanical seal for waterproofness is derived using Newton-Euler method. Using derived dynamics equation, a sliding mode controller is designed to track the desired path of the developed robot arm, and its performance is verified through a simulation.

Development of Teleoperation System with a Forward Dynamics Compensation Method for a Virtual Robot (가상 슬레이브 정동역학 보정에 기반한 원격제어 시스템 개발)

  • Yang, Jeong-Yean
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.7
    • /
    • pp.322-329
    • /
    • 2018
  • Teleoperation is defined with a master device that gives control command and a slave robot in a remote site. In this field, it is common that a human operator executes and experiences teleoperation with a virtual slave, and preliminary learns dynamic characteristic and network environment from both agents. Generally, a virtual slave has neglected forward dynamics and its kinematic model has been implemented in computer graphics. This makes a operator to experience actual feelings. This paper proposes a dynamic teleoperation model in which a robotic forward model is applied. Also, a novel compensation method is proposed to reduce the numerical error problems in forward dynamics caused by low control sampling rate. Finally, its results will be compared to the teleoperation in an actual environment.

Dynamic Parameters Identification of Robotic Manipulator using Momentum (모멘텀을 이용한 로봇 동역학 파라미터 식별)

  • Choi, Young-Jin
    • The Journal of Korea Robotics Society
    • /
    • v.7 no.3
    • /
    • pp.222-230
    • /
    • 2012
  • The paper presents a momentum-based regressor by using Hamiltonian dynamics representation for robotic manipulator. It has an advantage in that the proposed regressor does not require the acceleration measurement for the identification of dynamic parameters. Also, the identification algorithm is newly suggested by solving a minimization problem with constraint. The developed algorithm is easy to implement in real-time. Finally, the effectiveness of the proposed momentum-based regressor and identification method is shown through numerical simulations.

Dynamic Walking Planning and Inverse Dynamic Analysis of Biped Robot (이족로봇의 동적 보행계획과 역동역학 해석)

  • Park, In-Gyu;Kim, Jin-Geol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.9
    • /
    • pp.133-144
    • /
    • 2000
  • The dynamic walking planning and the inverse dynamics of the biped robot is investigated in this paper. The biped robot is modeled with 14 degrees of freedom rigid bodies considering the walking pattern and kinematic construction of humanoid. The method of the computer aided multibody dynamics is applied to the dynamic analysis. The equations of motion of biped are initially represented as terms of the Cartesian corrdinates then they are converted to the minimum number of equations of motion in terms of the joint coordinates using the velocity transformation matrix. For the consideration of the relationships between the ground and foot the holonomic constraints are added or deleted on the equations of motion. the number of these constraints can be changed by types of walking patterns with three modes. In order for the dynamic walking to be stabilizable optimized trunk positions are iteratively determined by satisfying the system ZMP(Zero Moment Point) and ground conditions.

  • PDF

Dynamic Walking and Inverse Dynamic Analysis of Biped Walking Robot (이족보행로봇의 동적보행과 역동역학 해석)

  • Park, In-Gyu;Kim, Jin-Geol
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.548-555
    • /
    • 2000
  • The dynamic walking and the inverse dynamics of the biped walking robot is investigated in this paper. The biped robot is modeled with 14 degrees of freedom rigid bodies considering the walking pattern and kinematic construction of humanoid. The method of the computer aided multibody dynamics is applied to the dynamic analysis. The equations of motion of biped are initially represented as terms of the Cartesian coordinates, then they are converted to the minimum number of equations of motion in terms of the joint coordinates using the velocity transformation matrix. For the consideration of the relationships between the ground and foot, the holonomic constraints are added or deleted on the equations of motion. The number of these constraints can be changed by types of walking pattern with three modes. In order for the dynamic walking to be stabilizable, optimized trunk positions are iteratively determined by satisfying the system ZMP(Zero Moment Point) and ground conditions.

  • PDF

Simplified Model of Wheel Type Dog-Horse Robot to Reduce Dynamic Analysis Time (차륜형 견마 로봇의 동역학 해석시간 단축을 위한 단순화 모델)

  • Kim, Young Jin;Jung, Samuel;Kim, Tae Yun;Yoo, Wan Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.2
    • /
    • pp.157-165
    • /
    • 2016
  • In wartime conditionsmilitary combat vehicles are required to be driven on rough roads that have significant obstacles. A wheel type dog-horse robot with a rotary suspension system was applied to overcome the obstacles. To achieve real-time analysis, a simplified model was proposed by using velocity transformations. Through comparison with the multi-body dynamics model, the efficiency and accuracy of the proposed modeling was proven.

Obstacle Avoidance for Formation of Mobile Robot (이동로봇의 대형제어를 위한 장애물 회피)

  • Oh, Young-Suk;Park, Jong-Hun;Kim, Jin-Hwan;Huh, Uk-Youl
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1902-1903
    • /
    • 2011
  • 본 논문에서는 리더-추종자 대형제어에서 추종자 로봇의 장애물 회피에 관해 다룬다. 추종자 로봇은 리더 로봇과의 대형유지 뿐만 아니라 장애물이 감지되면 회피한다. 추종자 로봇의 제어기는 리아프 노프 안정성이 고려된 백스테핑 방법을 이용해서 동역학 요소도 고려된 제어기로 설계한다. 장애물 회피 시에는 리더 로봇과 추종자 로봇의 위치 그리고 장애물의 인지에 따른 거리와 방향각을 이용하여 장애물을 회피한다. 시뮬레이션 실험을 통해 제안된 제어기의 안정된 성능을 확인할 수 있다.

  • PDF