• Title/Summary/Keyword: 로봇청소기

Search Result 39, Processing Time 0.025 seconds

GLOBAL REPORT IEC TC 59/SC 59F/WG 5 회의 참관기 - 청소로봇, 국제표준화 출발선상에 서다 -2011년 6월 중국 Suzhou에서 3일간 열려

  • Im, Seong-Su
    • The Monthly Technology and Standards
    • /
    • s.115
    • /
    • pp.36-39
    • /
    • 2011
  • 지능형 로봇의 파일로 상품인 청소로봇은 이미 시장 진입단계로 접어들었다. 특히 청소로봇에 대한 성능평가 국제표준은 한국의 국가표준을 기초로 2012년 표준 제정 작업이 진행되고 있다. WG 5 회의에 IEC SC 59F/ WG 5 컨비너 자격으로 참가했던 지능형로봇 표준포럼 성능/안전성 분과위원장인 임성수 경희대학교 교수의 참관기를 싣는다.

  • PDF

Complete Coverage Path Planning for Cleaning robot (청소로봇의 전역 경로계획)

  • Nam, Sang-Hyun;Moon, Seung-Bin
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2002.11c
    • /
    • pp.2431-2434
    • /
    • 2002
  • 본 논문에서는 전체 영역 경로 계획인 CCPP(Complete Coverage Path Planning)를 이용해 전 청소 영역을 청소하는 방법을 나타내고 청소영역을 해석 하였다. 그리고, Template방법에 CD(Cell Decomposition)을 접목시킨 방법을 이용해 청소영역을 청소 후 재 경로계획으로 청소 안된 영역을 효율적으로 청소하는 방법을 연구하였다. 또한 청소기의 회전 및 직선 모션에 따른 청소 영역을 비교 해석해 최적 시간과 거리에 따른 경로 계획을 살펴보았다.

  • PDF

The Study on Indoor Localization for Robots following Human using Vision Applications (비전을 활용한 사람을 따라다니는 로봇의 실내측위에 관한 연구)

  • Jun, Bong-Gi
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.6
    • /
    • pp.1370-1374
    • /
    • 2013
  • The suitcase can follow its owner all on its own via the Bluetooth connectivity in your phone. A robotic vacuum cleaner than can understand voice commands and even follow homeowner. Robots are used in a variety of applications such as a robot wheelchair. In this paper, I focus the problem of automatic return to the base in the process of developing the moving robot for loading things. In this paper, I propose the indoor localization method which is able to determine the position of the robot in the building by using image processing techniques.

The study of indoor localization for Robot following human using vision application (비전을 활용한 사람을 따라다니는 로봇의 실내측위에 관한 연구)

  • Jun, Bong-Gi
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.340-342
    • /
    • 2013
  • The suitcase can follow its owner all on its own via the Bluetooth connectivity in your phone. A robotic vacuum cleaner than can understand voice commands and even follow homeowner. Robots are used in a variety of applications such as a robot wheelchair. In this paper, I focus the problem of automatic return to the base in the process of developing the moving robot for loading things.

  • PDF

Development and Performance Evaluation of Hull Blasting Robot for Surface Pre-Preparation for Painting Process (도장전처리 작업을 위한 블라스팅 로봇 시스템 개발 및 성능평가)

  • Lee, JunHo;Jin, Taeseok
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.5
    • /
    • pp.383-389
    • /
    • 2016
  • In this paper, we present the hull blasting machine with vision-based weld bead recognition device for cleaning shipment exterior wall. The purpose of this study is to introduce the mechanism design of the high efficiency hull blasting machine using the vision system to recognize the weld bead. Therefore, we have developed a robot mechanism and drive controller system of the hull blasting robot. And hull blasting characteristics such as the climbing mechanism, vision system, remote controller and CAN have been discussed and compared with the experimental data. The hull blasting robots are able to remove rust or paint at anchor, so the re-docking is unnecessary. Therefore, this can save time and cost of undergoing re-docking process and build more vessels instead. The robot uses sensors to navigate safely around the hull and has a filter system to collect the fouling removed. We have completed a pilot test of the robot and demonstrated the drive control and CAN communication performance.

Implementation of Home Monitoring System Using a Vacuum Robot with Wireless Router (유무선공유기와 청소로봇을 이용한 홈 모니터링 시스템의 구현)

  • Jeon, Byung-Chan;Choi, Gyoo-Seok;Kang, Jeong-Jin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.5
    • /
    • pp.73-80
    • /
    • 2008
  • The recent trend in home network system includes intelligent home environments that remote monitoring and control service is achieved without restrictions by device types, time, and place. Also the use of a vacuum robot in homes is gradually generalized on account of the convenience of the use. In this paper, we proposed and realized new home-monitoring system with the employment of an self-movement robot as one trial for realizing an intelligent home under home network environment. The proposed system can freely monitor every where in home, because the system effectively overcame the surveillance limitations of the existing monitoring system by attaching a Wireless Router and WebCam to a commercial vacuum robot. The outdoor users of this system can readily monitor any place which they want to supervise by controlling a vacuum robot with mobile telecommunication devices such as PDA. The wireless router installed with Linux operation system "OpenWrt" made it possible for the system users to transmit images and to control a vacuum robot with RS-232 communication.

  • PDF

Control Technology Based on the Finger Recognition of Robot Cleaners (손가락 인식을 기반으로 한 로봇청소기 제어기술)

  • Yoo, Hyang-Joon;Mok, Seung-Su;Kim, Jun-Seo;Baek, Ji-A;Ko, Yun-Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.1
    • /
    • pp.139-146
    • /
    • 2020
  • The disadvantage of the general robot cleaner is that it works only on the designated route, so it is impossible to clean the place outside the designated route. Therefore, in this study, the direction control methodology for searching the place other than the designated route based on the finger recognition technology was studied to compensate for the shortcomings of the existing cleaner. Raspberry Pi was used as the main controller and Open CV program was used to recognize the number of fingers. To verify the validity of the proposed methodology, a finger recognition algorithm was implemented using Python language, and as a result of adopting the Logitech C922, the success rate was 100% at 90cm and 70% at 110cm, respectively.

Development of a CNN-based Cross Point Detection Algorithm for an Air Duct Cleaning Robot (CNN 기반 공조 덕트 청소 로봇의 교차점 검출 알고리듬 개발)

  • Yi, Sarang;Noh, Eunsol;Hong, Seokmoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.8
    • /
    • pp.1-8
    • /
    • 2020
  • Air ducts installed for ventilation inside buildings accumulate contaminants during their service life. Robots are installed to clean the air duct at low cost, but they are still not fully automated and depend on manpower. In this study, an intersection detection algorithm for autonomous driving was applied to an air duct cleaning robot. Autonomous driving of the robot was achieved by calculating the distance and angle between the extracted point and the center point through the intersection detection algorithm from the camera image mounted on the robot. The training data consisted of CAD images of the duct interior as well as the cross-point coordinates and angles between the two boundary lines. The deep learning-based CNN model was applied as a detection algorithm. For training, the cross-point coordinates were obtained from CAD images. The accuracy was determined based on the differences in the actual and predicted areas and distances. A cleaning robot prototype was designed, consisting of a frame, a Raspberry Pi computer, a control unit and a drive unit. The algorithm was validated by video imagery of the robot in operation. The algorithm can be applied to vehicles operating in similar environments.

Study on a Navigated Simulator of the Underwater Cleaning Robot (수중청소로봇의 운항 제어용 시뮬레이터 연구)

  • Choi, Hyeung-Sik;Kang, Jin-Il;Hong, Sung-Yul;Park, Han-Il;Seo, Joo-No;Kim, Moon-Hwan;Gwon, Kyeong-Yeop
    • Journal of Navigation and Port Research
    • /
    • v.33 no.6
    • /
    • pp.387-393
    • /
    • 2009
  • In this paper, a 3-D simulator was developed to estimate visually the performance of propelling and integrated control system of the underwater cleaning robot. Based on the dynamics analysis of the UCR, the 3-D model of the UCR was used in the simulator in which position and velocity are included Also, an input and control system using a joystick was developed, and the simulator was applied to the input and control of the simulator. Moreover, an integrated navigation control system was designed, and its performance was validated by a way-point simulator including a PI-based fuzzy control law.