• Title/Summary/Keyword: 로봇손

Search Result 243, Processing Time 0.035 seconds

Development of an Obstacle Avoidance Algorithm for a Network-based Autonomous Mobile Robot (네트워크 기반 자율이동로봇을 위한 장애물 회피 알고리즘 개발)

  • Kim Hongryeol;Kim Dae Won;Kim Hong-Seok;Sohn SooKyung
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.5
    • /
    • pp.291-299
    • /
    • 2005
  • An obstacle avoidance algorithm for a network-based autonomous mobile robot is proposed in this paper. The obstacle avoidance algorithm is based on the VFH(Vector Field Histogram) algorithm and two delay compensation methods with the VFH algorithm are proposed for a network-based robot with distributed environmental sensors, mobile actuators, and the VFH controller. Firstly, the environmental sensor information is compensated by prospection with acquired environmental sensor information, measured network delays, and the kinematic model of the robot. The compensated environmental sensor information is used for building polar histogram with the VFH algorithm. Secondly, a sensor fusion algorithm for localization of the robot is proposed to compensate the delay of odometry sensor information and the delay of environmental sensor information. Through some simulation tests, the performance enhancement of the proposed algorithm in the viewpoint of efficient path generation and accurate goal positioning is shown here.

An SoC-based Context-Aware System Architecture (SoC 기반 상황 인식 시스템 구조)

  • 이건명;손봉기;김종태;이승욱;이지형;전재욱;조준동
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.487-490
    • /
    • 2004
  • 상황 인식(context-awrare)은 인간-컴퓨터 상호작용의 단점을 극복하기 위한 방법으로써 많은 주목을 받고 있다. 이 논문에서는 SoC(System-on-a-Chip)로 구현될 수 있는 상황 인식 시스템 구조를 제안한다. 제안한 구조는 센서 추상화, 컨텍스트 변경에 대한 통지 메커니즘, 모듈식 개발, if-then규칙을 이용한 쉬운 서비스 구성과 유연한 상황 인식 서비스 구현을 지원한다. 이 구조는 통신 모듈, 처리 모듈, 블랙보드를 포함하는 SoC 마이크로프로세서 부분과 규칙 기반 시스템 모듈을 구현한 하드웨어로 구성된다. 규칙 기반 시스템 하드웨어는 모든 규칙의 조건부에 대해 매칭 연산을 병렬로 수행하고, 규칙의 결론부는 마이크로프로세서에 내장된 행위 모듈을 호출함으로써 작업을 수행한다. 제안한 구조의 SoC 시스템은 SystemC SoC 개발 환경에서 설계되고, 성공적으로 테스트되었다. 제안한 SoC 기반의 상황 인식 시스템 구조는 주거 환경에서 컨텍스트를 인식하여 노인을 보조하는 지능형 이동 로봇 등에 적용될 수 있을 것으로 기대된다.

  • PDF

Control Program for Dexterous Manipulation by Robotic Hand (물체의 안정한 조작을 위한 동작의 계획과 운동의 실현)

  • Hwang Chang-Soon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.4 s.235
    • /
    • pp.540-554
    • /
    • 2005
  • This paper presents a motion planning and control method for the dexterous manipulation with a robotic hand. For a given trajectory of an object, a simulation system calculates the necessary joint displacements and contact forces at the fingertip surfaces. These joint displacements and contact forces are the reference inputs to the control loops of the robotic fingers. A task is decomposed into a set of primitive motions, and each primitive motion is executed using the planned output of the simulation system as the reference. Force sensors and dynamic tactile sensors are used to adapt to errors and uncertainties encountered during manipulation. Several experimental results are presented.

Control of Grasp Forces for Robotic Hands Based on Human Capabilities (인간의 손의 능력을 응용한 로봇 핸드의 힘 제어)

  • Kim, Il-Hwan
    • Journal of Industrial Technology
    • /
    • v.16
    • /
    • pp.71-81
    • /
    • 1996
  • This paper discusses a physiological approach motivated by the study of human hands for robot hand force control. It begins with an analysis of the human's grasping behavior to see how humans determine the grasp forces. The human controls the grasp force by sensing the friction force, that is, the weight of the object which is felt on his hand, but when slip is detected by sensing skin acceleration, the grasp force becomes much greater than the minimum force required for grasping by adding the force which is proportional to the acceleration. And two methods that can predict when and how fingers will slip upon a grasped object are considered. To emulate the human's capabilities, we propose a method for determination of as grasp force, which uses the change in the friction force. Experimental results show that the proposed method can be applied to control of robot hands to grasp objects of arbitrary weight stably without skin-like slip sensors.

  • PDF

Hand Pressing Control Using the Five-Axis Force/Moment Sensor of Finger Rehabilitation (손가락 재활로봇의 5축 힘/모멘트센서를 이용한 손 누름제어)

  • Kim, Hyeon-Min;Kim, Gab-Soon
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.192-197
    • /
    • 2012
  • This paper describes the control of the hand fixing system attached to the finger rehabilitation robot for the rehabilitation exercise of patient's fingers. The finger rehabilitation robot is used to exercise the finger rehabilitation, and a patient's hand is safely fixed using the hand fixing system. In this paper, the hand fixing system was controlled with PD gains to fix a palm of the hand, and the characteristic test for the hand fixing system was carried out to sense the fixed hand movement of the front and the rear, that of the left and the right, and that of the upper. It is thought that the hand fixing system could safely fix the hand, and the movement of the fixed hand could be perceived using the five-axis force/moment sensor attached to the hand fixing system.

Improved Map construction for Mobile Robot using Genetic Algorithm and Fuzzy (진화 알고리즘과 퍼지 논리를 이용한 이동로봇의 개선된 맵 작성)

  • Son, Jung-Su;Jung, Suk-Yoon;Jin, Kwang-Sik;Yoon, Tae-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2451-2453
    • /
    • 2002
  • In this paper, we present an infrared sensors aided map building method for mobile robot using genetic algorithm and fuzzy logic. Existing Bayesian update model using ultrasonic sensors only has a problem of the quality of map being degraded in the wall with irregularity which is caused by the wide beam width of sonar waves and Gaussian probability distribution. In order to solve this problem we propose an improved method of map building using supplementary infrared sensors. In the method, wide beam width of sonar waves is divided by infrared sensors and probability is distributed according to infrared sensors' information using fuzzy logic and genetic algorithm.

  • PDF

Implementation of Wifi Robot Car using NodeMCU ESP-12 Board (NodeMCU ESP-12E 보드를 이용한 Wifi 로봇자동차 구현)

  • Son, Byung-jin;Lee, Dong-woo;Seo, Dong-hyeon;Kim, Mi-seong;Jo, Jae-ik;Choi, Byeong-yoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.475-477
    • /
    • 2017
  • In this paper Wifi robot car working as web sever on wifi network was implemented using NodeMCU ESP-12E board and its operation was verified using web browser of smart phone and PC. Current research result can be applicable to Wifi home automation applications with ESP-12E board.

  • PDF

Design of the Ultrasonic Motor for Driving Robot Hand (로봇 손 구동용 초음파 모터의 설계)

  • Park, K.J.;Baek, S.H.;Kim, S.H.;Jung, H.K.;Chung, I.R.;Chang, H.S.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.121-123
    • /
    • 1999
  • The purpose of this paper is to establish a method of design of the Ultrasonic Motor for Driving Robot Hand. This method is based on two models for the ultrasonic motor(a two dimensional elastic contact model. electric equivalent circuit). And analyzed the basic model which installed in the module to match the suitable standard. As varied external diameter, internal diameter and thickness, the proper ultrasonic motor is implemented to find a targeted resonant-frequency and torque near to designed values.

  • PDF

Development of a Tactile Array Sensor Layered in Artificial Skin for Robot Hand (로봇 손의 인공 피부형 접촉 센서의 개발)

  • Lim, Mee-Seub;Oh, S.R.;Lee, J.W.;Dario, P.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1272-1274
    • /
    • 1996
  • This paper presents the development of tactile sensor systems for robot hand which are truly usable, robust, reliable and cheap system. The sensor incorporates multiple sensing subsystems for detecting distributed contact forces and surface characteristics. The fabrication and experimental evaluation of the tactile system and its electric interfaces are described. The results indicate that the system provides reasonable performances for practical applications requiring manipulation with tactile feedback.

  • PDF

Autonomous Factory: Future Shape Realized by Manufacturing + AI (제조+AI로 실현되는 미래상: 자율공장)

  • Son, J.Y.;Kim, H.;Lee, E.S.;Park, J.H.
    • Electronics and Telecommunications Trends
    • /
    • v.36 no.1
    • /
    • pp.64-70
    • /
    • 2021
  • The future society will be changed through an artificial intelligence (AI) based intelligent revolution. To prepare for the future and strengthen industrial competitiveness, countries around the world are implementing various policies and strategies to utilize AI in the manufacturing industry, which is the basis of the national economy. Manufacturing AI technology should ensure accuracy and reliability in industry and should be explainable, unlike general-purpose AI that targets human intelligence. This paper presents the future shape of the "autonomous factory" through the convergence of manufacturing and AI. In addition, it examines technological issues and research status to realize the autonomous factory during the stages of recognition, planning, execution, and control of manufacturing work.