• Title/Summary/Keyword: 로그수익률

Search Result 17, Processing Time 0.019 seconds

Estimation of GARCH Models and Performance Analysis of Volatility Trading System using Support Vector Regression (Support Vector Regression을 이용한 GARCH 모형의 추정과 투자전략의 성과분석)

  • Kim, Sun Woong;Choi, Heung Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.2
    • /
    • pp.107-122
    • /
    • 2017
  • Volatility in the stock market returns is a measure of investment risk. It plays a central role in portfolio optimization, asset pricing and risk management as well as most theoretical financial models. Engle(1982) presented a pioneering paper on the stock market volatility that explains the time-variant characteristics embedded in the stock market return volatility. His model, Autoregressive Conditional Heteroscedasticity (ARCH), was generalized by Bollerslev(1986) as GARCH models. Empirical studies have shown that GARCH models describes well the fat-tailed return distributions and volatility clustering phenomenon appearing in stock prices. The parameters of the GARCH models are generally estimated by the maximum likelihood estimation (MLE) based on the standard normal density. But, since 1987 Black Monday, the stock market prices have become very complex and shown a lot of noisy terms. Recent studies start to apply artificial intelligent approach in estimating the GARCH parameters as a substitute for the MLE. The paper presents SVR-based GARCH process and compares with MLE-based GARCH process to estimate the parameters of GARCH models which are known to well forecast stock market volatility. Kernel functions used in SVR estimation process are linear, polynomial and radial. We analyzed the suggested models with KOSPI 200 Index. This index is constituted by 200 blue chip stocks listed in the Korea Exchange. We sampled KOSPI 200 daily closing values from 2010 to 2015. Sample observations are 1487 days. We used 1187 days to train the suggested GARCH models and the remaining 300 days were used as testing data. First, symmetric and asymmetric GARCH models are estimated by MLE. We forecasted KOSPI 200 Index return volatility and the statistical metric MSE shows better results for the asymmetric GARCH models such as E-GARCH or GJR-GARCH. This is consistent with the documented non-normal return distribution characteristics with fat-tail and leptokurtosis. Compared with MLE estimation process, SVR-based GARCH models outperform the MLE methodology in KOSPI 200 Index return volatility forecasting. Polynomial kernel function shows exceptionally lower forecasting accuracy. We suggested Intelligent Volatility Trading System (IVTS) that utilizes the forecasted volatility results. IVTS entry rules are as follows. If forecasted tomorrow volatility will increase then buy volatility today. If forecasted tomorrow volatility will decrease then sell volatility today. If forecasted volatility direction does not change we hold the existing buy or sell positions. IVTS is assumed to buy and sell historical volatility values. This is somewhat unreal because we cannot trade historical volatility values themselves. But our simulation results are meaningful since the Korea Exchange introduced volatility futures contract that traders can trade since November 2014. The trading systems with SVR-based GARCH models show higher returns than MLE-based GARCH in the testing period. And trading profitable percentages of MLE-based GARCH IVTS models range from 47.5% to 50.0%, trading profitable percentages of SVR-based GARCH IVTS models range from 51.8% to 59.7%. MLE-based symmetric S-GARCH shows +150.2% return and SVR-based symmetric S-GARCH shows +526.4% return. MLE-based asymmetric E-GARCH shows -72% return and SVR-based asymmetric E-GARCH shows +245.6% return. MLE-based asymmetric GJR-GARCH shows -98.7% return and SVR-based asymmetric GJR-GARCH shows +126.3% return. Linear kernel function shows higher trading returns than radial kernel function. Best performance of SVR-based IVTS is +526.4% and that of MLE-based IVTS is +150.2%. SVR-based GARCH IVTS shows higher trading frequency. This study has some limitations. Our models are solely based on SVR. Other artificial intelligence models are needed to search for better performance. We do not consider costs incurred in the trading process including brokerage commissions and slippage costs. IVTS trading performance is unreal since we use historical volatility values as trading objects. The exact forecasting of stock market volatility is essential in the real trading as well as asset pricing models. Further studies on other machine learning-based GARCH models can give better information for the stock market investors.

The Efficiency of Bank Underwriting of Corporate Securities in Korea (국내 자본시장 증권인수기능의 효율성에 관한 연구 : 은행계열과 비은행계열 금융기관 비교 분석)

  • Baek, Jae-Seung;Lim, Chan-Woo
    • The Korean Journal of Financial Management
    • /
    • v.27 no.1
    • /
    • pp.181-208
    • /
    • 2010
  • In July 2007, Korean government has passed "The Capital Market and Financial Investment Services Act" to further develop the capital markets and the Act was to become effective in February 2009. Using a large sample of Korean firms, we have examined (i) the effect of underwriting activities on the firm value (bond spread) comparing commercial bank and investment bank, and (ii) the determinants of the firm value changes following underwriting activities of bank. To test our goal, we collected a wide range of samples of data for bond issuing activities executed by Korean firms listed on the Korea Stock Exchange (KSE) between 2000 and 2003. Our paper is distinguished from previous studies on this subject in a way that we analyzed the effect of corporate bond underwriting activities with regard to commercial banking and investment banking. Initially, we set up a hypothesis that "Certification View" and "Conflict-of-interest View" are major driving forces behind cross-firm differences in performance following bond issuance. We find that, in general, underwriting by investment bank (securities company) brings a positive effect on the firm value (spread between bench mark rate and bond issuing rate). This result indicates that firm value has been negatively affected by the bank underwriting and provides the evidence for "Conflict-of-interest View" in Korea. Our studies have also revealed that any change in firm value following bond issuance is positively related with the firm size (total asset), operating performance, liquidity (cashflow), and equity ownership by foreign investors. Overall, our results support the view that bank underwriting activities can play an important role in determining firm value and financial strategies under "The Capital Market and Financial Investment Services Act" of 2007.

  • PDF

A Study on the Effect on Net Income of the Shipbuilding Industry through Exchange Hedge - Focused on the Global Top 5 Shipbuilders - (환헤지가 조선업체의 당기순이익에 미치는 영향에 관한 연구)

  • Cho, In karp;Kim, Jong keun
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.10 no.3
    • /
    • pp.133-146
    • /
    • 2015
  • This study is to investigate the causal relationship between exchange hedge and the net income of the shipbuilder through the unit root test and co-integration and vector autoregressive model(Vector Autoregressive Model: VAR). First, quarter net income of shipbuilders to order a unit root tests from 2000 to 2013 was used as a value after the Johnson transformation. In the same period, the return on bond futures(KTBF), three years bond yield(KTB3Y), America-Korea exchange differences are weekly data for each quarterly difference in value was converted by utilization, shipbuilding shares after log transformation which it was used. Also, structural change point investigation analysis to verify that looked to take advantage of the structural changes occur in the exchange hedge strategies affecting net income in the shipbuilding industry. Between the exchange hedge and net income of shipbuilders in structural change points detection and analysis showed that structural changes occur starting in 2004. In other words, strategy of shipbuilders about exchange hedge has occurred from "passive exchange hedge" to "active exchange hedge". The exchange hedge of the Korea shipbuilders through the estimation of the VAR was able to grasp that affect the profitability of mutual shipbuilders. Macroeconomic variables and stock prices could also check to see that affected the net income of the shipbuilding industry.

  • PDF

Empirical Analyses of Asymmetric Conditional Heteroscedasticities for the KOSPI and Korean Won-US Dollar Exchange Rate (KOSPI지수와 원-달러 환율의 변동성의 비대칭성에 대한 실증연구)

  • Maeng, Hye-Young;Shin, Dong-Wan
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.6
    • /
    • pp.1033-1043
    • /
    • 2011
  • In this paper, we use a nested family of models of Generalized Autoregressive Conditional Heteroscedasticity(GARCH) to verify asymmetric conditional heteroscedasticity in the KOSPI and Won-Dollar exchange rate. This study starts from an investigation of whether time series data have asymmetric features not explained by standard GARCH models. First, we use kernel density plot to show the non-normality and asymmetry in data as well as to capture asymmetric conditional heteroscedasticity. Later, we use three representative asymmetric heteroscedastic models, EGARCH(Exponential Garch), GJR-GARCH(Glosten, Jagannathan and Runkle), APARCH(Asymmetric Power Arch) that are improved from standard GARCH models to give a better explanation of asymmetry. Thereby we highlight the fact that volatility tends to respond asymmetrically according to positive and/or negative values of past changes referred to as the leverage effect. Furthermore, it is verified that how the direction of asymmetry is different depending on characteristics of time series data. For the KOSPI and Korean won-US dollar exchange rate, asymmetric heteroscedastic model analysis successfully reveal the leverage effect. We obtained predictive values of conditional volatility and its prediction standard errors by using moving block bootstrap.

A Study of Option Pricing Using Variance Gamma Process (Variance Gamma 과정을 이용한 옵션 가격의 결정 연구)

  • Lee, Hyun-Eui;Song, Seong-Joo
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.1
    • /
    • pp.55-66
    • /
    • 2012
  • Option pricing models using L$\acute{e}$evy processes are suggested as an alternative to the Black-Scholes model since empirical studies showed that the Black-Sholes model could not reflect the movement of underlying assets. In this paper, we investigate whether the Variance Gamma model can reflect the movement of underlying assets in the Korean stock market better than the Black-Scholes model. For this purpose, we estimate parameters and perform likelihood ratio tests using KOSPI 200 data based on the density for the log return and the option pricing formula proposed in Madan et al. (1998). We also calculate some statistics to compare the models and examine if the volatility smile is corrected through regression analysis. The results show that the option price estimated under the Variance Gamma process is closer to the market price than the Black-Scholes price; however, the Variance Gamma model still cannot solve the volatility smile phenomenon.

Option Pricing Models with Drift and Jumps under L$\acute{e}$vy processes : Beyond the Gerber-Shiu Model (L$\acute{e}$vy과정 하에서 추세와 도약이 있는 경우 옵션가격결정모형 : Gerber-Shiu 모형을 중심으로)

  • Cho, Seung-Mo;Lee, Phil-Sang
    • The Korean Journal of Financial Management
    • /
    • v.24 no.4
    • /
    • pp.1-43
    • /
    • 2007
  • The traditional Black-Scholes model for option pricing is based on the assumption that the log-return of the underlying asset follows a Brownian motion. But this assumption has been criticized for being unrealistic. Thus, for the last 20 years, many attempts have been made to adopt different stochastic processes to derive new option pricing models. The option pricing models based on L$\acute{e}$vy processes are being actively studied originating from the Gerber-Shiu model driven by H. U. Gerber and E. S. W. Shiu in 1994. In 2004, G. H. L. Cheang derived an option pricing model under multiple L$\acute{e}$vy processes, enabling us to adopt drift and jumps to the Gerber-Shiu model, while Gerber and Shiu derived their model under one L$\acute{e}$vy process. We derive the Gerber-Shiu model which includes drift and jumps under L$\acute{e}$vy processes. By adopting a Gamma distribution, we expand the Heston model which was driven in 1993 to include jumps. Then, using KOSPI200 index option data, we analyze the price-fitting performance of our model compared to that of the Black-Scholes model. It shows that our model shows a better price-fitting performance.

  • PDF

Investment Priorities and Weight Differences of Impact Investors (임팩트 투자자의 투자 우선순위와 비중 차이에 관한 연구)

  • Yoo, Sung Ho;Hwangbo, Yun
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.18 no.3
    • /
    • pp.17-32
    • /
    • 2023
  • In recent years, the need for social ventures that aim to grow while solving social problems through the efficiency and effectiveness of commercial organizations in the market has increased, while there is a limit to how much the government and the public can do to solve social problems. Against this background, the number of social venture startups is increasing in the domestic startup ecosystem, and interest in impact investors, which are investors in social ventures, is also increasing. Therefore, this research utilized judgment analysis technology to objectively analyze the validity and weight of judgment information based on the cognitive process and decision-making environment in the investment decision-making of impact investors. We proceeded with the research by constructing three classifications; first, investment priorities at the initial investment stage for financial benefit and return on investment as an investor, second, the political skills of the entrepreneurs (teams) for the social impact and ripple power, and social venture coexistence and solidarity, third, the social mission of a social venture that meets the purpose of an impact investment fund. As a result of this research, first of all, the investment decision-making priorities of impact investors are the expertise of the entrepreneur (team), the potential rate of return when the entrepreneur (team) succeeds, and the social mission of the entrepreneur (team). Second, impact investors do not have a uniform understanding of the investment decision-making factors, and the factors that determine investment decisions are different, and there are differences in the degree of the weighting. Third, among the various investment decision-making factors of impact investment, "entrepreneur's (team's) networking ability", "entrepreneur's (team's) social insight", "entrepreneur's (team's) interpersonal influence" was relatively lower than the other four factors. The practical contribution through this research is to help social ventures understand the investment determinant factors of impact investors in the process of financing, and impact investors can be expected to improve the quality of investment decision-making by referring to the judgment cases and analysis of impact investors. The academic contribution is that it empirically investigated the investment priorities and weighting differences of impact investors.

  • PDF