• Title/Summary/Keyword: 로그블록 기법

Search Result 31, Processing Time 0.024 seconds

FAST : A Log Buffer Scheme with Fully Associative Sector Translation for Efficient FTL in Flash Memory (FAST :플래시 메모리 FTL을 위한 완전연관섹터변환에 기반한 로그 버퍼 기법)

  • Park Dong-Joo;Choi Won-Kyung;Lee Sang-Won
    • The KIPS Transactions:PartA
    • /
    • v.12A no.3 s.93
    • /
    • pp.205-214
    • /
    • 2005
  • Flash memory is at high speed used as storage of personal information utilities, ubiquitous computing environments, mobile phones, electronic goods, etc. This is because flash memory has the characteristics of low electronic power, non-volatile storage, high performance, physical stability, portability, and so on. However, differently from hard disks, it has a weak point that overwrites on already written block of flash memory is impossible to be done. In order to make an overwrite possible, an erase operation on the written block should be performed before the overwrite, which lowers the performance of flash memory highly. In order to solve this problem the flash memory controller maintains a system software module called the flash translation layer(FTL). Of many proposed FTL schemes, the log block buffer scheme is best known so far. This scheme uses a small number of log blocks of flash memory as a write buffer, which reduces the number of erase operations by overwrites, leading to good performance. However, this scheme shows a weakness of low page usability of log blocks. In this paper, we propose an enhanced log block buffer scheme, FAST(Full Associative Sector Translation), which improves the page usability of each log block by fully associating sectors to be written by overwrites to the entire log blocks. We also show that our FAST scheme outperforms the log block buffer scheme.

An Efficient Log Buffer Management Through Join between Log Blocks (로그 블록 간 병합을 이용한 효율적인 로그 버퍼 관리)

  • Kim, hak-cheol;Park, youg-hun;Yun, jong-hyeon;Seo, dong-min;Song, seok-il;Yoo, jae-soo
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2009.05a
    • /
    • pp.51-56
    • /
    • 2009
  • Flash memory has rapidly deployed as data storage. However, the flash memory has a major disadvantage that recorded data cannot be dynamically overwritten. In order to solve this "erase-before-write" problem, the log block buffer scheme used Flash memory file system. however, the current managements of the log buffer, in case random write pattern, BAST technique have problem of frequent merge operation, but FAST technique don't consider merge operation by frequently updated data. Previous methods not consider merge operation cost and frequently updated data. In this paper, we propose a new log buffer management scheme, called JBB. Our proposed method evaluates the worth of the merge of log blocks, so we conducts the merge operation between infrequently updated data and its data blocks, and postpone the merge operation between frequently updated data and its data blocks. Through the method, we prevent the unnecessary merge operations, reduce the number of the erase operation, and improve the utilization of the flash memory storage. We show the superiority of our proposed method through the performance evaluation with BAST and FAST.

  • PDF

Considerations for Designing an Integrated Write Buffer Management Scheme for NAND-based Solid State Drives (SSD를 위한 쓰기 버퍼와 로그 블록의 통합 관리 고려사항)

  • Park, Sungmin;Kang, Sooyong
    • Journal of Digital Contents Society
    • /
    • v.14 no.2
    • /
    • pp.215-222
    • /
    • 2013
  • NAND flash memory-based Solid State Drives (SSD) have lots of merits compared to traditional hard disk drives (HDD). However, random write in SSD is still far slower than sequential read/write and random read. There are two independent approaches to resolve this problem: 1) using part of the flash memory blocks as log blocks, and 2) using internal write buffer (DRAM or Non-Volatile RAM) in SSD. While log blocks are managed by the Flash Translation Layer (FTL), write buffer management has been treated separately from FTL. Write buffer management schemes did not use the exact status of log blocks and log block management schemes in FTL did not consider the behavior of write buffer management scheme. In this paper, we first show that log blocks and write buffer have a tight relationship to each other, which necessitates integrated management of both of them. Since log blocks also can be viewed as another type of write buffer, we can manage both of them as an integrated write buffer. Then we provide three design criteria for the integrated write buffer management scheme which can be very useful to SSD firmware designers.

A Non-fixed Log Area Management Technique in Block for Flash Memory DBMS (플래시메모리 DBMS를 위한 블록의 비고정적 로그 영역 관리 기법)

  • Cho, Bye-Won;Han, Yong-Koo;Lee, Young-Koo
    • Journal of KIISE:Databases
    • /
    • v.37 no.5
    • /
    • pp.238-249
    • /
    • 2010
  • Flash memory has been studied as a storage medium in order to improve the performance of the system using its high computing speed in the DBMS field where frequent data access is needed. The most difficulty using the flash memory is the performance degradation and the life span shortening of flash memory coming from inefficient in-place update. Log based approaches have been studied to solve inefficient in-place update problem in the DBMS where write operations occur in smaller size of data than page frequently. However the existing log based approaches suffer from the frequent merging operations, which are the principal cause of performance deterioration. Thus is because their fixed log area management can not guarantee a sufficient space for logs. In this paper, we propose non-fixed log area management technique that can minimize the occurrence of the merging operations by promising an enough space for logs. We also suggest the cost calculation model of the optimal log sector number minimizing the system operation cost in a block. In experiment, we show that our non-fixed log area management technique can have the improved performance compared to existing approaches.

An Efficient Log Buffer Management Scheme of Flash Memory Through Delay of Merging Hot Data Blocks (HOT 데이터 블록 병합 지연을 이용한 효율적인 플래시 메모리 로그 버퍼 관리 기법)

  • Kim, Hak-Chul;Park, Yong-Hun;Yun, Jong-Hyeong;Seo, Dong-Min;Song, Suk-Il;Yoo, Jae-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.1
    • /
    • pp.68-77
    • /
    • 2010
  • In this paper, we propose a new log buffer management scheme considering the accessibility of the data. Our proposed scheme evaluates the worth of the merge of log blocks. It conducts the merge operations between infrequently updated data and the data blocks and postpones as much as possible the merge operations between frequently updated data and the data blocks. As a result, the proposed method prevents the unnecessary merge operations, reduces the number of the erase operations, and improves the utilization of the flash memory storage. In order to show the superiority of the proposed scheme, we compare it with BAST and FAST. It is shown through performance evaluation that the proposed method achieves about 25% and 65% performance improvements over BAST and FAST on average in terms of the number of the erase operations.

Workload-Driven Adaptive Log Block Allocation for Efficient Flash Memory Management (효율적 플래시 메모리 관리를 위한 워크로드 기반의 적응적 로그 블록 할당 기법)

  • Koo, Duck-Hoi;Shin, Dong-Kun
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.37 no.2
    • /
    • pp.90-102
    • /
    • 2010
  • Flash memory has been widely used as an important storage device for consumer electronics. For the flash memory-based storage systems, FTL (Flash Translation Layer) is used to handle the mapping between a logical page address and a physical page address. Especially, log buffer-based FTLs provide a good performance with small-sized mapping information. In designing the log buffer-based FTL, one important factor is to determine the mapping structure between data blocks and log blocks, called associativity. While previous works use static associativity fixed at the design time, we propose a new log block mapping scheme which adjusts associativity based on the run-time workload. Our proposed scheme improves the I/O performance about 5~16% compared to the static scheme by adjusting the associativity to provide the best performance.

Block Linked List Scheme to Reduce GC (Garbage Collection) Overhead in Flash Memory (플래시 메모리 GC (가비지 콜렉션) 오버헤드를 줄이기 위한 블록 링크드 리스트 기법)

  • Koo, Sohyun;Kim, Sungsoo;Chung, Tae-Sun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2014.11a
    • /
    • pp.70-72
    • /
    • 2014
  • 플래시 메모리는 소형 저장 장치뿐만 아니라 대용량 저장장치까지 응용되고 있다. 하지만 기존의 하드디스크 (HDD)와 다르게 플래시 메모리는 읽기, 쓰기, 소거 연산의 속도가 다르고 쓰기 전 지우기(erase before write)라는 특성 때문에 FTL의 한 메커니즘인 GC (Garbage Collection)를 수행할 때 많은 오버헤드가 발생한다. 이에 이 논문은 DRAM의 공간을 효율적으로 활용하고 유효한 페이지 복사와 소거 연산의 횟수를 줄여 전체적인 플래시 메모리 GC 오버헤드를 줄이기 위한 블록 링크드 리스트 기법을 제안한다. 블록 링크드 리스트 기법은 같은 LBN에 해당하는 데이터를 로그 블록에 적고 해당 로그 블록들을 링크드 리스트로 관리해 소거 연산을 미룰 수 있다. 링크드 리스트들에 관한 정보는 DRAM에 테이블 형태로 적는다. 이때 테이블에는 블록 주소들이 적히므로 페이지 단위로 링크드 리스트를 관리하는 다른 기법에 비해 DRAM의 공간을 효율적으로 활용하게 된다.

An Efficient Cleaning Scheme for File Defragmentation on Log-Structured File System (로그 구조 파일 시스템의 파일 단편화 해소를 위한 클리닝 기법)

  • Park, Jonggyu;Kang, Dong Hyun;Seo, Euiseong;Eom, Young Ik
    • Journal of KIISE
    • /
    • v.43 no.6
    • /
    • pp.627-635
    • /
    • 2016
  • When many processes issue write operations alternately on Log-structured File System (LFS), the created files can be fragmented on the file system layer although LFS sequentially allocates new blocks of each process. Unfortunately, this file fragmentation degrades read performance because it increases the number of block I/Os. Additionally, read-ahead operations which increase the number of data to request at a time exacerbates the performance degradation. In this paper, we suggest a new cleaning method on LFS that minimizes file fragmentation. During a cleaning process of LFS, our method sorts valid data blocks by inode numbers before copying the valid blocks to a new segment. This sorting re-locates fragmented blocks contiguously. Our cleaning method experimentally eliminates 60% of file fragmentation as compared to file fragmentation before cleaning. Consequently, our cleaning method improves sequential read throughput by 21% when read-ahead is applied.

An Auxiliary Log Area for In-Page Logging Scheme (In-Page 로깅 기법을 위한 보조 로그 영역)

  • Van, Jae-Kwang;Jin, Rize;Kim, Sungsoo;Chung, Tae-Sun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2014.04a
    • /
    • pp.729-731
    • /
    • 2014
  • 플래시 메모리에서 B-tree 데이터를 저장하고 관리[4, 5]할 때 빈번한 수정과 구조변동으로 인해 발생하는 블록에 대한 쓰기와 지우기 연산의 비용으로 인해 플래시 메모리의 사용 수명을 단축시키는 문제를 해결하기 위해 현재 많이 쓰이고 있는 로그 저장방식을 검토하고 이를 효율적으로 B-tree에 저장하고 관리하도록 동적 블록 그룹핑과 순환 순서 기반의 저장 알고리즘으로 제안 된 GRR (Ground Round Robin) 기법을 보조 로그 블록을 할당하여 머지횟수를 줄일 수 있는 알고리즘을 제안한다.

Index management technique using Small block in storage device based on NAND flash memory

  • Lee, Seung-Woo;Oh, Se-Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.10
    • /
    • pp.1-14
    • /
    • 2020
  • In this paper, we propose to solve the problem of increasing system memory usage due to an increase in the number of mapping information management when using a NAND flash memory-based storage device in an existing sector-based file system. The proposed technique is to store only mapping information in page units based on index blocks and manage them in block units. To this end, the proposed technique uses a sequential offset for storing and managing a plurality of mapping information in one page in a small block, and a reverse offset for a spare page corresponding to a change in mapping information in the block. Through this, the proposed technique has the advantage that the number of block-unit deletions is less than that of the existing technique, and the system memory usage required for mapping information management is low. Reduced by about 32%.