• Title/Summary/Keyword: 레지스트레이션

Search Result 15, Processing Time 0.026 seconds

Hybrid Affine Registration Using Intensity Similarity and Feature Similarity for Pathology Detection

  • June-Sik Kim;Ho-Sung Kim;Jong-Min Lee;Jae-Seok Kim;In-Young Kim;Sun I. Kim
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.1
    • /
    • pp.39-47
    • /
    • 2002
  • The objective of this study is to provide a Precise form of spatial normalization with affine transformation. The quantitative comparison of the brain architecture across different subjects requires a common coordinate system. For the common coordinate system, not only global brain but also a local region of interest should be spatially normalized. Registration using mutual information generally matches the whose brain well. However. a region of interest may not be normalized compared to the feature-based methods with the landmarks. The hybrid method of this Paper utilizes feature information of the local region as well as intensity similarity. Central gray nuclei of a brain including copus callosum, which is used for feature in Schizophrenia detection, is appropriately normalized by the hybrid method. In the results section. our method is compared with mutual information only method and Talairach mapping with schizophrenia Patients. and is shown how it accurately normalizes feature .

Intelligent Document Scanning with Active Camera (Active카메라를 이용한 지능형 문서 영상 획득)

  • 박안진;정기철
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10b
    • /
    • pp.592-594
    • /
    • 2004
  • 문서 영상 획득(document scanning)은 문서 영상 분석과 인식을 위한 중요한 단계이다 최근, 문서 영상 획득 장치로 스캐너(flat scanner)가 가장 많이 이용되고 있지만, 만지면 망가질 것 같은 얇은 고서, 매우 두꺼운 책과 같은 문서를 획득하기에는 어려움이 있다 이런 어려움을 해결하기 위해, 카메라를 이용한 문서 영상 획득에 관한 않은 연구가 진행되고 있으며, 카메라의 저해상도나 잡음과 칼은 문제를 해결하면, 스캐너를 대신하는 입력 장치로 이용할 수 있다. 저해상도 문제를 해결하는 방법으로 기본의 일반적인 레지스트레이션(registration) 방법은, 연결 부분(stitching position)에서 오브젝트(object: text, graphics, image)의 왜곡이 생기는 문제점이 있다. 본 논문에서는 PTZ(pan-tilt-zoom) 카메라를 이용하여 연결 부분에서 왜곡을 최소화하여 오브젝트를 획득하는 컴포넌트 기반의 영상 레지스트레이션(component-based image registration) 방법을 제안한다. 제안한 방법은 연결 부분에서 오브젝트의 수를 최소화하는데 목적이 있으며, 일반적인 레지스트레이션 방법에 비해 연결 부분에서 왜곡을 상당히 줄일 수 있으며, 상대적으로 인식률을 놓일 수 있다.

  • PDF

On Shape Recovery of 3D Object from Multiple Range Images (시점이 다른 다수의 거리 영상으로부터 3차원 물체의 형상 복원)

  • Kim, Jun-Young;Yun, Il-Dong;Lee, Sang-Uk
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.37 no.1
    • /
    • pp.1-15
    • /
    • 2000
  • To reconstruct 3- D shape, It is a common strategy to acquire multiple range Images from different viewpoints and integrate them into a common coordinates In this paper, we particularly focus on the registration and integration processes for combining all range Images into one surface model. For the registration, we propose the 2-step registration algorithm, which consists of 2 steps the rough registration step using all data points and the fine registration step using the high-curved data points For the integration, we propose a new algorithm, referred to as ‘multi-registration’ technique, to alleviate the error accumulation problem, which occurs during applying the pair-wise registration to each range image sequentially, in order to transform them into a common reference frame Intensive experiments are performed on the various real range data In experiments, all range images were registered within 1 minutes on Pentium 150MHz PC The results show that the proposed algorithms registrate and integrate multiple range Images within a tolerable error bound in a reasonable computation time, and the total error between all range Images are equalized with our proposed algorithms.

  • PDF

Medical Image Registration Methods for Intra-Cavity Surgical Robots (인체 공동 내부 수술용 로봇을 위한 이미지 레지스트레이션 방법)

  • An, Jae-Bum;Lee, Sang-Yoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.9
    • /
    • pp.140-147
    • /
    • 2007
  • As the use of robots in surgeries becomes more frequent, the registration of medical devices based on images becomes more important. This paper presents two numerical algorithms for the registration of cross-sectional medical images such as CT (Computerized Tomography) or MRI (Magnetic Resonance Imaging) by using the geometrical information from helix or line fiducials. Both registration algorithms are designed to be used for a surgical robot that works inside a cavity of human body. This paper also reports details about the fiducial pattern that includes four helices and one line. The algorithms and the fiducial pattern were tested in various computer-simulated situations, and the results showed excellent overall registration accuracy.

Numerical Algorithms of Image Registration for Intra-Cavity Surgical Robots (인체 공동 내부 수술용 로봇을 위한 이미지기반 레지스트레이션 알고리즘)

  • Lee, Sang-Yoon;Shin, Seung-Ha;An, Jae-Bum;Joo, Jin-Man
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.714-719
    • /
    • 2004
  • This paper presents two numerical algorithms for registration of cross-sectional medical images such as CT (Computerized Tomography) or MRI (Magnetic Resonance Imaging) by using geometrical information from helix or line fiducials. The registration algorithms are designed to be used for a surgical robot working inside cavities of human body. A cylindrical device with a combination of line and helix fiducials were also devised and is supposed to be attached to the end-effector of surgical robot. The algorithms and the fiducial pattern were tested in various computer-simulated situations, and the results indicate excellent overall registration accuracy.

  • PDF

Study of Registration of 3D Data by Using the Feature on Products (제품의 특징형상을 이용한 3차원 데이터의 레지스트레이션 방안 연구)

  • Kim, Min-Seok;In, Jae-Jun;Lee, Eun-Gi
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.4
    • /
    • pp.140-145
    • /
    • 2008
  • Recently more complex geometric shapes, including freeform surfaces, are adopted for the design of products to emphasize style or beauty. Modeling of these products is extremely difficult or often impossible. Reverse engineering is the latest technology that can solve the problem by generating CAD models from the physical mockups or prototype models. Reverse engineering uses the coordinate measuring machine(CMM) to get the shape data of products. CMM is limited by the size of the product; therefore it must need the feature to solve it. The tooling-ball which is generally used for feature has difficulty in being used for soft products. Besides, the higher the accuracy of the tooling-ball is, the more expensive its cost is. This study will develop the feature of high accuracy without additional tools and compare the difference of accuracy by it.

3-Dimensional Dental Surgery System based on PC using anatomical landmarks (해부학적 계측점을 이용한 PC-기반3차원 치과수술 시스템)

  • 이경상;유선국;김형돈;배현수;김남현
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.2
    • /
    • pp.139-148
    • /
    • 1999
  • In this paper, we designed the dental surgery system based on PC. This system predict post operated 3-dimensional image, So the patient has no need to take CT after surgery and expose his body to radiological damage. We predict the post operated skull from the patient's CT with pre and post cephalometry X-ray. Our novel procedures, to register X-ray and CT, are based on anatomical landmarks, singular value decomposition. And we display the predicted image 3-dimensionally by surface rendering. We verified this system by dry skull experiment and clinical experiment. When significance level is 0.05, there is on significance.

  • PDF

A Study on Reducing Errors in Scanning Object and Registration using a Laser Scanner (레이저 스캐너를 이용한 측정 및 레지스트레이션시 오차감소에 관한 연구)

  • 홍성균;김연술;이희관;김형찬;양균의
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.9
    • /
    • pp.197-204
    • /
    • 2003
  • This study proposes a method to reduce errors in scanning object and registration using a laser scanner. The method consists of 3 stages. First, there is an error induced by the difference of the distance between the probe and the object. It is possible to reduce the error by planning a scanning strategy: object setting, scan path. Second, the scan data of the tooling ball affects calculating the tooling ball center. A z-direction compensation is given to calculate more accurate registration points. Third, three points are used to determine a coordinate transformation on each frame. The maximum error usually lies on the third tooling ball in the conventional merging method. LSM (Least Square Method) is applied to a coordinate transformation to reduce the registration error.

The Model based Tracking using the Object Tracking method in the Sequence Scene (장면 전환에서의 물체 추적을 통한 모델기반추적 방법 연구)

  • Kim, Se-Hoon;Hwang, Jung-Won;Kim, Ki-Sang;Choi, Hyung-Il
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.775-778
    • /
    • 2008
  • Augmented Reality is a growing area in virtual reality research, The world environment around us provides a wealth of information that is difficult to duplicate in a computer. This evidenced by the worlds used in virtual environments. An augmented reality system generates a composite view for the user. It is a combination of the real scene viewed by the user and a virtual scene generated by the computer that augments the scene with addition information. The registration method represent to the user enhances that person's performance in and perception of the world. It decide the direction and location between real world and 3D graphic objects. The registration method devide two method, Model based tracking and Move-Matching. This paper researched at to generate a commerce correlation using a tracking object method, using at a color distribution and information, in the sequence scene.

  • PDF

Automation of laser scanning and registration of measured data using a 3-axis motorized stage (3축 전동테이블을 이용한 레이저 스캐너의 측정 및 레지스트레이션 자동화)

  • Son, Seok-Bae;Kim, Seung-Man;Lee, Kwan-Heng
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.134-139
    • /
    • 2001
  • Laser scanners are widely used for reverse engineering and inspection of freeform parts in industry such as motors, electronic products, dies and molds. Due to the lack of measuring software and positioning device, the laser scanning processes have been erroneous and inconsistent. In order to automate measuring processes, an automated scan plan generation software and a proprietary hardware are developed. In this paper, an automated laser scanning system using a 3-axis motorized stage is proposed. In the scan planning step, scan directions, paths, and the number of scans are generated considering optical and mechanical parameters. In the scanning step, the generated scan plan is downloaded into the laser scanner and the motorized stage and the points on the surface are captured automatically. Finally, the point data set is analyzed to evaluate the performance of the system.

  • PDF