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Hybrid Affine Registration Using Intensity Similarity
and Feature Similarity for Pathology Detection
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Abstract : The objective of this study is to provide a precise form of spatial normalization with affine transformation. The
quantitative comparison of the brain architecture across different subjects requires a common coordinate system. For the
common coordinate system, not only global brain but also a local region of interest should be spatially normalized. Registration
using mutual information generally matches the whole brain well. However, a region of interest may not be normalized
compared to the feature-based methods with the landmarks. The hybrid method of this paper utilizes feature information of
the local region as well as intensity similarity. Central gray nuclei of a brain including corpus callosum, which is used for
feature in Schizophrenia detection, is appropriately normalized by the hybrid method. In the results section, our method is
compared with mutual information only method and Talairach mapping with schizophrenia patients, and is shown how it
accurately normalizes feature.

Key words : Mutual information, Feature similarity, Spatial normalization

INTRODUCTION numerous applications in three-dimensional (3D) medical

image processing. Medical diagnosis, for instance, often

Image registration was an important component in benefited from the complementarity of the information in
many neuroimaging applications using multi-modality and images of different modalities. In radiotherapy planning,
intra-modality medical images. The geometric alignment dose calculation was based on the computed tomography
of multi-modality images was a fundamental task in (CT) data, while tumor outlining was often better
performed in the corresponding magnetic resonance (MR)

EAAA A4Y, (133-600) A& AET AE5TAT AT 565 scan. For brain function analysis, MR images provided
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images, etc. Moreover, the image registration allowed the
characterization of the morphology of different subjects’
brains. MR images which represented brain structure
were generally used for the morphologic analysis and
comparison. For the comparison, every brain images were
normalized in the same stereotactic space. There were
many methods for registration such as including Talairach
mapping, linear transformation, and non-linear deformation.
Studies of brain morphometry had already revealed stru-
ctural differences between a number of patient popula-
tions, and much of the focus of brain disease research as
schizophrenia in particular was based upon brain mor—
phometry[1, 2, 3].

Image registration could be broadly divided into label
based and non-label based. Label-based techniques iden-
tified homologous features in the image and template and
found the transformations that best superposed them. The
labels could be frame, points, lines, or surfaces[4, 5, 6,].

Stereotactic frame-based registration, one of the label-
based methods, was very accurate. But this method was
inconvenient, and difficult to apply retrospectively, as with
any external point landmark-based method. If the labels
were points, then the required transformation at each of
those points was well known. However, anatomical point
landmark methods were usually labor intensive and the
accuracy depended on the accurate indication of corres—
ponding landmarks in all modalities. Label-based registra-
tion required delineation of corresponding surfaces in each
of the images separately. But surface segmentation algo-
rithms were highly data and application dependent and
surfaces were not easily identified in functional modalities
such as PET.

Non-label based approaches identified a spatial trans-
formation that minimized some index of the difference
between an object and a target images, where both were
treated as unlabeled continuous processes. The matching
criterion was usually based upon maximizing the correlation
between the images. For this criterion to be successful, it
required an image itself. In other words, there should be
correspondence in the gray levels of the different tissue
types between the object and target. Various voxel-based
methods had been proposed that optimized some global
measure of the absolute difference between image
intensities of corresponding voxel within overlapping parts
or in a region of interest (ROD{7, 8, 9, 10]. The advantage
of voxel-based methods was that feature calculation was
straightforward or even absent when only gray-values
were used, so that the accuracy of these methods was
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not limited by segmentation errors as in surface based
methods. These criteria all relied on the assumption that
the intensities of the two images were linearly correlated,
which was generally not satisfied in the case of inter-
modality registration. Advanced correlation measure using
mutual information (MI) registered inter-modality image
as well as intra-modality[11]. The MI registration criterion
provided accurate, highly robust, and completely automatic
registration of multi-modality and intra-modality medical
images. However, these voxel-based approaches were
difficult to match the complex structure of a brain because
these methods used global intensity similarity only. Geo-
metric information was absent in these methods.

In this paper, we provide a hybrid method with affine
transformation using valuable characteristics of label based
and non-label based by means of maximizing both of
intensity similarity using MI criterion and feature similarity.
This approach matches the global form of a brain through
the intensity correlation, and also registers a local anatomic
region with the homologous features. In our study, anterior
commissure (AC) and posterior commissure (PC) is used
as the feature. These points is important to chart the
central gray nuclei and the mesencephalic region in the
Talairach system[12]. In order to validate our algorithm,
the registration error of the global brain and the corpus
callosum will be estimated in the mutual information only
method, the Talairach mapping and our method.

MATERIALS AND METHODS

An intensity-based brain template is used as a target
image. In this study, registration algorithm requires inten-
sity distribution of brain images and features such as AC
and PC. The Talairach coordinate system satisfies this
condition. The brain template is made with a normal case
in the Talrairach system (section 1). Then, suspected
image data of disease are matched to the brain template
with registration algorithm of section 2. Finally, each
feature of the brain template and patient image is
extracted and compared by method of section 3.

1. Intensity-based brain template for Koreans

10 normal brain images were used to make an averaged
brain atlas. To preserve the morphological characteristic
of the middle part of the brain including the corpus
callosum and ventricles, the Talairach coordinate system
was used. The Talairach coordinate system is the 3D
stereotactic space based on AC and PC, mid-sagittal
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plane, and 6 outer boundary planes of the brain. The
intensity averaged brain atlas is generated as follows.
Three-dimensional image data of all subjects are mapped
into standardized Talairach space to correct differences in
relative position and size. The intensity of each image is
normalized. Then, the images are averaged on a voxel-by
-voxe] basis, producing an average intensity MRI dataset

as shown in Figure 1.
2. Registration algorithm

Each of the volume data is associated with a volume
coordinate frame. Its origin is positioned in a corner of
the image with the x axis along the row direction, the y
axis along the column direction, and the z axis along the
plane direction. One of the images is selected to be the
floating volume, F, transformed into reference volume, R.
In this study, we apply affine transformation to the tran-
sformation 7,. The affine transformation is a superpo-
sition of a 3D rotation, translation, scaling, and shearing.
Then the registration parameter p is a twelve-component
vector. Transformation of volume coordinates Pr to Pg
from volume F to volume R is given by

PR=M1;I.Majfine'MF’PF (Eq 1)

Pu Pon P Pu
Py Pn Py Pxn

Pt Py Pz P
0 0 0 1

where. M . =

Mpr and Mpr are matrices that map from the voxel
coordinates of images F and G into their own Euclidian
space.

Mp and Mp are 4X4 matrixes representing the voxel
size and the translation to the volume center of image F
and R, respectively in Euclidian space. Often, the volumes
(F and R) will have anisotropic voxels. The dimensions
of the voxels are also likely to differ between images.
For simplicity, a Euclidian space is used, where measures
of distances are expressed in millimeters. Rather than
interpolating the images such that the voxels are cubic
and have the same dimensions in all images, one can
simply define affine transformation matrices that map
from voxel coordinates into this Euclidian space.

The registration algorithm optimizes Mggn. parameters
maximizing similarity between volumes. To optimize
parameters, we utilize both the intensity similarity and

feature similarity.
2-1. Intensity similarity

For optimizing the affine parameters, the cost function
uses two terms. The first term is similarity measure of
mutual information. The intensity cost function is defined
by MI between T,(F) and R.

Clmensity = I(Tp (F)’ R) (Eq 2)

In this paper, we deal with the Kullback-Leibler
measure of mutual information, for which an essential
element is the joint histogram of the floating and
reference image. We expect the histogram of the trans—
formed test image to depend slightly on the transformation
parameters, and the histogram of the reference image to
be constant, exactly. The most important dependence with
respect to the geometric transformation parameters is to
be found in their joint histogram.

Estimations for the marginal and joint image intensity
distributions Pz p(f), P ,(#), and P pp ,(f, ) are obtained

by normalization of a joint histogram #4,(f, »)

h,(f.r)
Pons(f:1)= >, b (fr)
P,y (V=X P, (1) . (Eq. 3)

Prp(r) =zpm,p f.n
i
The MI registration criterion is evaluated by

Py, (f>1)

I\, (F),R)= ) Py, (f,1)log, ———"———
TPR)= 2 b, (F0l08 5= (g 1)

where T, : affine transformation,
F, R :floating source and reference target images,
fintensity value on F image mapped into R space
by affine transformation,
r intensity value on R image,
Pry(f) - the probability when the f value exist on
the F' image,
Pgy(r) : the probability when the r value exist on
the R image,
Prry(fir) - the probability when the f and r value
simultaneously appear on same points in
R space.

J. Biomed. Eng. Res: Vol. 23, No. 1, 2002
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2-2. Feature similarity

The second term of total cost function consists of
feature similarity. AC and PC points are used as features
in this work. Since the corpus callosum is laid between
AC and PC points, the corpus callosum is registered well
if each of the AC and PC points is accurately matched.
The feature term of the cost function is given by

C‘Feamrez_\/5(146‘/‘)_1461]2 +[TP (chf)_PC""]2 (Eq 5)

Creanre Tepresents negative distance between feature
points of floating and reference volume.

2-3. Registration criterion

The total cost function for optimization is defined by
both the intensity and feature cost functions as the
following.

Crow =C, +AC

Intensity

Feature s (Eq 6)

where A is a scaling factor.
Finally, the optimal registration parameter p* is found
from

¥ =
p*=arg ml?x Crow ' (Eq. 7)

The affine transformation parameters are iteratively
optimized and refined by Powell's multidimensional direction
set method and brent's line minimization algorithm[13].
The direction matrix is initialized with unit vectors in
each of the parameter directions. Then, the iteration to
the updated direction is performed. A is also updated with
every iterations. A trades off matching the global brain
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and coming close to features. If the parameter M is
constant and enough big, AC and PC points of floating
volume are nearly registered into AC and PC points of
reference volume, but the intensity cost function may not
reach global minima. If A is constant and too small, the
global appearance of brain is well registered, but the local
region of interest such as the corpus callosum may not
be normalized. Therefore, we determine the parameter A
to be adaptable. If AC and PC of floating volume are far
from reference, A becomes large so that the cost function
keeps an appropriate initial condition and avoids a local
minimum. If AC and PC points of floating volume are
near to them of reference, A becomes small so that the
cost function prevents them from mismatching brain
volumes because of feature constraints. Therefore, the
current scaling parameter A" is updated by

n
_ Cfeature % ll

A=
Cfeamre (Eq. 8)
where n is the iteration number.

M is initial value of 0.003 in this study. This equation
indicates that the scaling parameter is in proportional to
the current feature cost value.

3. Feature extraction for Schizophrenia detection

A parcellation tool, developed by the biomedical engi-
neering department in Hanyang University, is used to
extract the corpus callosum and gray-matter{14]. This
tool provides preprocessing operations, such as cerebrum
extraction, segmentation, and boundary detection of region
of interest (ROI). Region growing and morphological
operations such as dilation and erosion were used to
extract the cerebrum of the brain. In order to select ROI
for the corpus callosum, the cerebrum is first classified

Fig. 1. Intensity-based Korean brain template
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Fig. 2. ROI selection as feature
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Fig. 3. Sectioning corpus callosum. (a) edge of corpus
callosum, (b) initially sectioned corpus callosum, (c)
finally sectioned corpus callosum, and (d) numbering
section 1 to 15
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Fig. 4. The result image may be changeable with magnitude variation of the feature constraint parameter . (a) original
source image which is not transformed (mid-sagittal plane), (b) target image (brain template, mid-sagittal plane), (c)
small parameter lambda = 0.0001 ( AC and PC points were not weli-matched between transformed points and targeting
points), (d) large parameter lambda = 0. 01 (AC and PC points were well-matched however, the large constraint brought
about geometric distortion), (e) adaptive parameter lambda, (f}~(h) are the corresponding merged images between target

image (brain atlas) and (c)~(e)

into several tissues-white matter (WM), gray matter
(GM), and cerebrospinal fluid (CSF). The corpus callosum
is included in WM. Since the selection of ROI is
performed with the segmentation results, the accuracy of
the analysis depends highly on the segmentation method.
In order to improve segmentation results, fuzzy c-means
(FCM) is repeatedly applied to data, which is classified as
a WM class and whose resulting membership value is
less than a threshold value{l15]. The parcellation tool
displays both the original image and its segmentation
result. Then, the ROI is being drawn on the segmented
image while simultaneously referenced to its original image.
The ROI determined above is also displayed on the

original image for crosschecking. Figure 2 shows the
corpus callosum extracted by the parcellation tool.

The edge of the cortex and the contour of the corpus
callosum are traced by our parcellation tool (Figure 3(a)).
Landmark points on the corpus callosum are located at
the posterior tip of the genu and the end of the splenium.
Next, 14 evenly spaced points on the spline curve are
located between these points along the top and bottom
edges of the corpus callosum as shown in Figure 3(b).
Each of the 14 points on the top of the ROI is connected
with its opposite member on the bottom. Center points of
these connecting lines are calculated. Lines are drawn
across the corpus callosum through these center points.

J. Biomed. Eng. Res: Vol. 23, No. 1, 2002
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Fig. 5. shows result images of each method in axial plane. (a) original source image which is not transformed, (b)
target image (brain template), (¢) source image after hybrid registration, (d) source image after registration only using

MI maximization, (e) source image after mapping into Talairach space, (c)~(e) images are binary image made by
thresholding intensity, (f)~(h) are the corresponding merged images between target image (b) and each of (¢c)~(e)

© @ ©
® o @ ®

Feature based MI Only T dlairach space

Fig. 6. The result images of each method are shown in mid-sagittal plane. (a) The source image before registration, (b)
The target image (brain template), (c) corpus callosum extracted from source image after hybrid registration, (d) corpus
callosum extracted from source image after registration only using M|l maximization, (e) corpus callosum extracted from
source image after mapping into Talairach space, (f)~(h) are the corresponding merged images between target image
(brain atlas) and (c)~(e). The gray value of (f)~(h) means difference between atlas and each image (¢c)~(e)

Then, we redefine 14 sectioning lines perpendicular to the 14 widths and 15 areas in the final image (Figure 3(c)

lines connecting center points. This procedure determines and (d)).
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Fig. 7. The similarity of Ml method and hybrid method

RESULTS

10 Schizophrenia disease images were compared with
10 normal MRI brain images. For the normalization, each
case was registered into brain template introduced in the

method section 2-1.
1. Feature similarity constraint parameter

This section shows some effects of the feature cons-
traint parameter M introduced in the section 2-3. In Figure
4, (h) the image is well registered into the target image
for the corpus callosum (dark gray region) and global
shape.

2. Comparison of each method of mutual informa-
tion, Talairach mapping, and our method

Figure 5 shows differences among Talairach mapping,
MI, and hybrid methods. The gray indicates the difference
between two images, and the white shows the overlapped
region of two images. (g) and (h) are well registered into
target images about the lateral ventricle and global shape.

Table 1. Difference of global gray

1312.7 £ 108.5

atter volume between normal and schizophrenia patient about each method

Area

—e— Normal
|~&—SZ

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of Region

Fig. 8. Average areas of corpus callosum region by
section

The result of volume difference estimation between each
registered image and target image shows that hybrid
registered images (149280£9764mm°) and Talairach space
mapped images (145720£10700mm*) have much smaller
(about 7.7%) differences than images only using MI
maximization (161780£11260mm°). In the one-way ANOVA
test, the mean of groups from the hybrid method and the
MI only method are significantly different (p=0.01).

Figure 6 demonstrates the normalization of the corpus
callosum by each method. The white is the overlapped
area between floating and reference images, and the gray
indicates the difference. (g) and (h) are slightly mismatched
in rotation and scaling.

The iteration number of the total cost function is
increased in the hybrid method due to refining similarity.
But the similarity of mutual information grows up in the
hybrid method compared with only the mutual information
method as shown in Figure 7. This represents that the
hybrid method provides more accurate matching compared
with the mutual information method.

3. Schizophrenia detection

Figure 6 shows the comparison of each corpus callosum
area measured by Talairach mapping, MI, and hybrid
registration. From the t-test, sections of No. 11 and No.
13 are significantly decreased in schizophrenia (p<0.01).

Table 1 shows the difference of global gray matter

57.01 2328.2 £ 131.2|1304.3 + 98.20 56.02

11450.1 + 735.9| 852.1 + 41.84

58.78 1427.4 = 53.28| 813.0 £ 56.24 56.95

448.8 £ 536.7| 8563.7 £ 35.90

58.93 1421.3 £ 82.54| 796.3 £ 59.68 56.03

J. Biomed. Eng. Res: Vol. 23, No. 1, 2002
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volume between normal and schizophrenia patient. The
gray matter volume of schizophrenia patients was shrunk
by 0.99%, 1.83%, and 2.90% in Talairach mapping, mutual

information, and hybrid registration methods, respectively.
DISCUSSION

The proposed hybrid registration method using mutual
information and feature similarity provides a reasonable
normalization method for analyzing disease features. In
contrast to methods using one of intensity similarity or
feature similarity, the algorithm is concerned about local
normalization as well as global normalization. The compa-
rison results of each method shows that the normalization
of local features such as the corpus callosum is normalized
better than mutual information and Talairach mapping
methods. It is important to normalize with local feature
because local matching affects on the analysis of disease
characteristics. Global matching is also important because
the GM or CSF area all over brain is a criterion for
pathology detection. Our hybrid affine registration method
results in allowable global matching.

Comparing it with the mutual information method, the
hybrid method increases the intensity similarity value and
the iteration number. This result is statistically significant
(p<0.0001). The increase of the intensity similarity shows
that the global brain is matched better than the mutual
information method. However, the refining process with
features appears to be too time consuming to converge
and to calculate total similarity.

The feature similarity constraint parameter might in-
fluence a registration result. The result demonstrates the
effect. To match both the feature and intensity distribu-
tion, we made the constraint parameter variable. In the
experiment, the parameter generally varies from 0.01 of
the start to 0.0005 of the final converging.

The corpus callosum, the main fiber tract connecting
the two brain hemispheres, which consists of approximately
200-350 million fibers in human, provides the majority of
axonal transmissions between the two cerebral hemispheres
and subserves interhemispheric information transfer{16]. In
this study, we found that the genu of the corpus callosum
was smaller in disease patients with Schizophrenia than
in normal controls. In contrast, the splenium of the corpus
callosum was larger in Schizophrenia disease patients
than controls. Decreases in area could be related to unde-
rlying decreases in fiber number, in fiber diameter, in
resulting in increased fiber

non-axonal components

fo
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density, mechanical pressure on the corpus callosum from
expanding ventricular size, or a combination of these
variations.

In the all results by Talairach, mutual information and
hybrid methods, the volume of GM
schizophrenia patients. Global gray matter reduction would

is decreased in
be consistent with a widespread disorder of cortical lami-
nation during neurodevelopment. To date, evidence has
been found for reductions in global and regional gray
matter, and in a number of regions of interest, including
the hippocampus, amygdala, superior temporal gyrus and
frontal lobe regions[17]. Our method might be adapted to
measuring the regional gray matter change by defining
appropriate feature points, line, or surface.

In this paper, just 2 features of AC and PC points are
used as feature similarity. Many features over two
actually may not seriously affect the linear normalization
as though defined for feature similarity. However, many
feature points are important in the non-linear normali-
zation. If both Intensity distribution and feature are used
in the nonlinear normalization, the result might provide
accurate and reasonable registration for the pathology
detection.

CONCLUSIONS

This paper introduced a new affine registration algorithm
using both of intensity similarity and feature similarity,
and a proposed image analysis method for pathology
detection using feature characteristics obtained by compa-
ring the brains to those schizophrenia patients to normal
brains. In the future, we will develop a pathology detection
method using non-linear deformation registration and defor-
mation field.
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