• Title/Summary/Keyword: 레이놀즈 방정식

Search Result 168, Processing Time 0.026 seconds

Numerical Optimization of A Multi-Blades Centrifugal Fan For High-Efficiency Design (원심다익송풍기의 고효율 설계를 위한 수치최적설계)

  • Seo, Seoung-Jin;Kim, Kwang-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.385-390
    • /
    • 2003
  • Shape of a multi-blades centrifugal fan is optimized by response surface method based on three-dimensional Navier-Stokes analysis. For numerical analysis, Reynolds-averaged Wavier-Stokes equations with standard $k-{\varepsilon}$ turbulence model are transformed into non-orthogonal curvilinear coordinate system, and are discretized with finite volume approximations. Due to the large number of blades in this centrifugal fan, the flow inside of the fan is regarded as steady flow by introducing the impeller force models for economic calculations. Optimizations with and without constraints are carried out. Design variables, location of cur off, radius of cut off, expansion angle of scroll and width of impeller were selected to optimize the shapes of scroll and blades. Data points for response evaluations were selected by D-optimal design, and linear programming method was used for the optimization on the response surface. As a main result of the optimization, the efficiency was successfully improved. The correlation of efficiency with relative size of inactive zone at the exit of impeller is discussed as well as with average momentum fluxes in the scroll.

  • PDF

Flow Analysis in the Fuel Chamber of Engine by Applying Turbulent Models (난류모형을 적용한 엔진 연료실의 유동해석)

  • Kwag Seung-Hyun
    • Journal of Navigation and Port Research
    • /
    • v.30 no.5 s.111
    • /
    • pp.369-374
    • /
    • 2006
  • The flow analysis was made by applying the turbulent models in the complicated fuel chamber of engine. The $k-\varepsilon,\;k-\omega$, Spalart-Allmaras and reynolds stress models are used in which the hybrid grid is applied for the simulation. The velocity vector, the pressure contour, the change of residual along the iteration number, and the dynamic head are simulated for the comparison of four example cases. Computational results are compared with others. For the code's validation, 2-D bodies were simulated in advance by predicting the drag coefficients.

Numerical Simulations of Open-Channel Flow using Non-Linear k-$\varepsilon$ Turbulence Model (비선형 k-$\varepsilon$ 난류모형을 이용한 개수로 흐름 해석)

  • Choi, Seong-Wook;Kang, Hyeong-Sik;Choi, Sung-Uk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.566-570
    • /
    • 2012
  • 본 연구에서는 비선형 k-$\varepsilon$ 모형을 이용하여 직사각형 개수로에서 평균흐름과 난류구조를 모의하였다. 표준 k-$\varepsilon$ 난류모형은 난류의 등방성을 가정하여 국부적 평형상태에서 계산하기 때문에 유선에 따른 레이놀즈 응력의 변형이 큰 경우나 이방성이 강한 경우 이를 계산하지 못한다. 이를 보완하기 위하여 제시된 것이 비선형 k-$\varepsilon$ 난류모형이다. 본 연구에서는 표준 k-$\varepsilon$ 모형과 비선형 k-$\varepsilon$ 모형에 의한 모의결과를 비교하였다. 난류모형을 검증하기 위하여 직사각형 개수로에 흐름을 완전 발달된 등류로 가정하여 해석하였다. 지배방정식을 해석하기 위해 Patankar와 Spalding (1972)이 제시한 SIMPLER 알고리즘을 사용하였고 유한체적법을 이용하여 이산화하고 엇갈린 격자체계를 사용하여 계산에서 발생하는 과도한 진동을 줄였다. 또한 차분기법은 Patankar (1980)가 제시한 Power-law 기법을 채택하였으며 경계조건으로 2층 벽법칙 모형과 Hossain과 Rodi (1993)의 모형을 이용하였다. 두 모형의 적용성을 검증하기 위하여 실측자료를 이용하여 비교하였고 그 결과 비선형 k-$\varepsilon$ 모형이 표준 k-$\varepsilon$ 모형에 비해 좀 더 실측지에 가깝게 모의하는 것을 볼 수 있었다.

  • PDF

EHL Analysis of Ball Bearing for Rough Surface With the FlowFactor (FlowFactor를 이용한 볼베어링의 탄성유체윤활해석)

  • Lee, Byung-Wook;Moon, Seok-Man;Kim, Tae-Wan;Cho, Yong-Joo
    • Tribology and Lubricants
    • /
    • v.27 no.6
    • /
    • pp.326-331
    • /
    • 2011
  • The purpose of this paper is to analyze and discuss the effects of surface roughness by comparing the elastohydrodynamic lubrication(EHL) analysis of smooth surface and rough surface as the ball bearing. In order to do this, The average flow model is adapted for the interaction of the flow rheology of lubricant and surface roughness. The average Reynolds equation and the related flow factor which describes the coupled effects of surface roughness and flow rheology, the viscosity-pressure and density-pressure relations equations, the elastic deformation equation, and the force balance equation are solved simultaneously. The results show that effects of surface roughness on the film thickness and pressre distribution should be considered especially in EHL contact problems.

A Lubrication Performance Analysis of Mechanical Face Seals Using Galerkin Finite Element Method (갤러킨 유한요소해석법을 이용한 미케니컬 페이스 실의 윤활성능해석)

  • Choe, Byeong-Ryeol;Lee, An-Seong;Choe, Dong-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.6
    • /
    • pp.916-922
    • /
    • 2001
  • A mechanical face seal is a tribo-element intended to control leakage of working fluid at the interface between a rotating shaft and its housing. Leakage of working fluid decreases drastically as the clearance of the mating seal faces gets smaller. But the very small seal clearance results in an increased reduction of seal life because of high wear and heat generation. Therefore, in the design of mechanical face seals a compromise between low leakage and acceptable seal life is important, and it presents a difficult and practical design problem. A fluid film or sealing dam geometry of the seal clearance affects seal lubrication performance very much, and thereby it is one of the main design considerations. In this study the Reynolds equation for the sealing dam of mechanical face seals is numerically analyzed, using the Galerkin finite element method, which is readily applied to various seal geometries. Film pressures of the sealing dam are analyzed, including the effects of the seal face coning and tilt. Then, lubrication performances of the seals, such as opening forces, restoring moments, leakage, and dynamic coefficients, are calculated, and they are compared to the results obtained by the narrow seal approximation.

Design Optimization of A Multi-Blade Centrifugal Fan With Variable Design Flow Rate (설계유량을 변수로 한 원심다익송풍기의 최적설계)

  • Seo, Seoung-Jin;Kim, Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.11
    • /
    • pp.1332-1338
    • /
    • 2004
  • This paper presents the response surface optimization method using three-dimensional Navier-Stokes analysis to optimize the shape of a forward-curved blades centrifugal fan. For numerical analysis, Reynolds-averaged Navier-Stokes equations with k-$\varepsilon$ turbulence model are discretized with finite volume approximations. In order to reduce huge computing time due to a large number of blades in forward-curved blades centrifugal fan, the flow inside of the fan is regarded as steady flow by introducing the impeller force models. Three geometric variables, i.e., location of cut off, radius of cut off, and width of impeller, and one operating variable, i.e., flow rate, were selected as design variables. As a main result of the optimization, the efficiency was successfully improved. And, optimum design flow rate was found by using flow rate as one of design variables. It was found that the optimization process provides reliable design of this kind of fans with reasonable computing time.

A Study on Improvement γ-Reθt Model for Hypersonic Boundary Layer Analysis (극 초음속 경계층 해석을 위한 γ-Reθt모델 개선 연구)

  • Kang, Sunoh;Oh, Sejong;Park, Donghun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.5
    • /
    • pp.323-334
    • /
    • 2020
  • Since boundary layer transition has a significant impact on the aero-thermodynamic performance of hypersonic flight vehicles, capability of accurate prediction of transition location is essential for design and performance analysis. In this study, γ-Reθt model is improved to predict transition of hypersonic boundary layers and validated. A coefficient in the production term of the intermittency transport equation that affects the transition onset location is constructed and applied as a function of Mach number, wall temperature, and freestream stagnation temperature based on the similarity numerical solution of compressible boundary layer. To take into account a Mach number dependency of transition onset momentum thickness Reynolds number and transition length, additional correlation equations are determined as function of Mach number and applied to Reθc and Flength correlations of the baseline model. The suggested model is implemented to a commercial CFD code in consideration of practical use. Analysis of hypersonic flat plate and circular cone boundary layers is carried out by using the model for validation purpose. An improvement of prediction capability with respect to variation of Mach number and unit Reynolds number is identified from the comparison with experimental data.

Numerical Investigation of Turbulence Structure and Suspended Sediment Transport in Vegetated Open-Channel Flows (식생된 개수로에서 난류 구조와 부유사 이동 현상의 수치해석)

  • Gang, Hyeong-Sik;Choe, Seong-Uk
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.5
    • /
    • pp.581-592
    • /
    • 2000
  • Turbulence structure and suspended sediment transport capacity in vegetated open-channel flows are investigated numerically in the present paper. The $\textsc{k}-\;\varepsilon$ model is employed for the turbulence closure. Mean velocity and turbulence characteristics including turbulence intensity, Reynolds stress, and production and dissipation of turbulence kinetic energy are evaluated and compared with measurement data available in the literature. The numerical results show that mean velocity is diminished due to the drag provided by vegetation, which results in the reduction of turbulence intensity and Reynolds stress. For submerged vegetation, the shear at the top of vegetation dominates turbulence production, and the turbulence production within vegetation is characterized by wakes. For emergent condition, it is observed that the turbulence generation is dominated by wakes within vegetation. In general, simulated profiles compares favorably to measured data. Computed values of eddy viscosity are used to solve the conservation equation for suspended sediment, yielding sediment concentration more uniform over the depth compared with the one in the plain channel. The simulation reveals that the suspended load decreases as the vegetation density increases and the suspended load increases as the particle diameter decreases for the same vegetation density.

  • PDF

Finite Element Analysis for Evaluation of Viscous and Eccentricity Effects on Fluid Added Mass and Damping (유체 부가질량 및 감쇠 결정시 점성 및 편심 영향에 대한 유한요소해석)

  • 구경회;이재한
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.2
    • /
    • pp.21-27
    • /
    • 2003
  • In general, simple fluid added mass method is used for the seismic and vibration analysis of the immersed structure to consider the fluid-structure interaction effect. Actually, the structural response of the immersed structure can be affected by both the fluid added mass and damping caused by the fluid viscosity. These variables appeared as a consistent matrix form with the coupling terms. In this paper, finite element formula for the inviscid fluid case and viscous fluid case are derived from the linearized Navier Stoke's equations. Using the finite element program developed in this paper, the analyses of fluid added mass and damping for the hexagon core structure of the liquid metal reactor are carried out to investigate the effect of fluid viscosity with variation of the fluid gap and Reynolds number. From the analysis results, it is verified that the viscosity significantly affects the fluid added mass and damping as the fluid gap size decrease. From the analysis results of eccentricity effect on the fluid added mass and damping of the concentric cylinders, the fluid added mass increase as the eccentricity increases, however the fluid damping increases only when the eccentricity is very severe.

Numerical Technique to Analyze the Flow Characteristics of a Propeller Using Immersed Boundary Lattice Boltzmann Method (가상경계 격자볼쯔만법을 이용한 프로펠러의 유동특성해석 방법에 관한 연구)

  • Kim, Hyung Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.7
    • /
    • pp.441-448
    • /
    • 2016
  • The thrust force created by a propeller depends on the incoming flow velocity and the rotational velocity of the propeller. The performance of the propeller can be described by dimensionless variables, advanced ratio, thrust coefficient, and power coefficient. This study included the application of the immersed boundary lattice Boltzmann method (IBLBM) with the stereo lithography (STL) file of the rotating object for performance analysis. The immersed boundary method included the addition of the external force term to the LB equation defined by the velocity difference between the lattice points of the propeller and the grid points in the domain. The flow by rotating a 4-blade propeller was simulated with various Reynolds numbers (Re) (including 100, 500 and 1000), with advanced ratios in the range of 0.2~1.4 to verify the suggested method. The typical tendency of the thrust efficiency of the propeller was obtained from the simulation results of different advanced ratios. It was also necessary to keep the maximum mesh size ratio of the propeller surface to a grid size below 3. Additionally, a sufficient length of the downstream region in the domain was maintained to ensure the numerical stability of the higher Re and advanced ratio flow.