• 제목/요약/키워드: 랜덤탐색

검색결과 97건 처리시간 0.024초

랜덤하프변환과 코너추출을 이용한 경사면의 장애물 위치 탐색 (Obstacle Position Detection on an Inclined Plane Using Randomized Hough Transform and Corner Detection)

  • 황선민;이민철
    • 제어로봇시스템학회논문지
    • /
    • 제17권5호
    • /
    • pp.419-428
    • /
    • 2011
  • This paper suggests a judgement method for an inclined plane before entrance of it and the detection of obstacle position. Main idea is started from the assumption that obstacle is always on the bottom plane, and corner appears at this position. The process to detect the obstacle consists of three steps. First the 3D data using stereo matching is acquired to detect an obstacle. Second a bottom plane is extracted by using limit condition. Last the obstacle position is found by using Harris corner detection. Obstacle position detection on an inclined plane was verified by outdoor and indoor experiment. In error analysis, it is confirmed that an average error of obstacle detection in outdoor was larger than the error in indoor but the error are within about 0.030 m. This method will be applied to unmanned vehicles to navigate under various environment.

플래시 SSD에서 B-Tree 인덱스 재 구축 기법 성능 분석 (Performance Evaluation of B-Tree Index Re-creating and Compacting Operations on Flash SSD)

  • 박양훈;김재명;이상원
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2012년도 한국컴퓨터종합학술대회논문집 Vol.39 No.1(C)
    • /
    • pp.207-209
    • /
    • 2012
  • B-Tree 인덱스는 삭제된 레코드에 대해 삭제 표시만을 하고, 기존 레코드를 재 조정하지 않아 인덱스가 너무 커지거나 빈 공간이 많이지는 경우, 인덱스 재 생성이나 압축이 필요하다. 플래시 SSD는 하드디스크와 다른 성능 특성을 가지므로 인덱스의 재 생성하는 비용 및 효과가 서로 다르다. 직관적으로 플래시 SSD는 랜덤 읽기 성능이 우수하므로 인덱스를 조정 할 필요가 적다고 생각할 수 있다. 이 논문에서는 상용 DBMS를 이용하여 인덱스를 재 생성 및 압축하고, 전후의 인덱스 탐색 비용을 비교한다.

의미 확산을 이용한 잠재 의미 색인 방법 (Latent Semantic Indexing Using Semantic Diffusion)

  • 김진화;김용혁
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2010년도 한국컴퓨터종합학술대회논문집 Vol.37 No.1(C)
    • /
    • pp.16-21
    • /
    • 2010
  • 잠재 의미를 색인하는 것은 문서 색인에 있어서 그 색인 품질에 주요한 요인을 차지한다. 본 논문에서 살펴보는 의미 확산 방법은 문서 집합에 나타나는 단어들의 의미적 연관성을 바탕으로 활성화 작용 모델(spreading activation model)을 구축하고 색인 대상 문서의 단어 분포를 출발점으로 삼아, 그 모델 안에서 의미적으로 수렴할 수 있도록 랜덤 워크 방법(random walk method)1)을 수정한 변형 방법을 이용해 확률을 확산시킨다. 이 방법은 단어 사이의 연관성을 따라 탐색하며 동의어와 다의어 등 단순 단어 일치로는 알 수 없는 의미적 유사 단어들이 의미 있는 확률 분포를 갖게 한다. 이는 단어들의 의미 분포를 가중치 그래프를 통해 보다 합리적으로 다루게 된다. 실험에서는 문서 분류를 시행하여 평균 정확도 및 정확도-재현율 곡선을 산출하였고, 비교 실험을 통해서 전반적인 우수성을 관찰할 수 있었다.

  • PDF

3D 복셀맵에서의 GMRF 기반 지면 분리 (GMRF-Based Ground Segmentation in 3D Voxel Map)

  • 송웨이;조성재;조경은;엄기현;원치선;심성대
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2012년도 추계학술발표대회
    • /
    • pp.495-496
    • /
    • 2012
  • 원격 환경에서 작동하는 원격 로봇을 조종하기 위해서는 조종사가 빠르게 계획을 세워야 한다. 이를 위해 GPS, 자이로스코프, 비디오 카메라, 3D 센서 등에서 획득한 2D 및 3D 데이터셋으로 복셀 맵을 구성한다. 지형 모델의 각 복셀은 이웃하는 복셀에 큰 영향을 받는다. 그러므로 깁스-마르코프 랜덤 필드 모델(GMRF, Gibbs-Markov Random Field) 을 사용하여 복셀맵에서 이동 가능한 영역을 탐색하는 방법을 제안한다.

Redis 파라미터 분류 및 단계적 베이지안 최적화를 통한 파라미터 튜닝 연구 (A Study on Parameter Tuning for Redis via Parameter Classification and Phased Bayesian Optimization)

  • 조성운;박상현
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 추계학술발표대회
    • /
    • pp.476-479
    • /
    • 2021
  • DBMS 파라미터 튜닝이란 데이터베이스에서 제공하는 다양한 파라미터의 값을 조율하여, 최적의 성능을 도출하는 과정이다. 데이터베이스 종류에 따라 파라미터 개수가 수십 개에서 수백 개로 다양하며, 각 기능이 모두 다르기 때문에 최적의 조합을 찾는 것은 쉽지 않다. 선행 연구에서는 BO 기법을 사용하여 적절한 파라미터 값을 추출했지만, 파라미터 개수에 비례하여 차원이 커지는 문제가 발생한다. 본 논문에서는 통계적으로 파라미터를 분류하여 탐색 공간을 줄인 다음 단계적으로 BO 를 수행하는 PBO 방식을 제안한다. 파라미터 값을 랜덤하게 할당하여 벤치마킹한 결과값을 군집화한 후, 각 군집별로 파라미터와의 연관성을 분석해 높은 상관관계를 가진 파라미터를 매칭시켜 분류한다. 제안하는 방법론을 검증하기 위하여 8 가지 회귀 모델과의 비교 실험을 통해 제안한 방법론의 우수성을 검증하였다.

전문가의 형태소 분류를 활용한 과학 논증 자동 채점 (Automated Scoring of Scientific Argumentation Using Expert Morpheme Classification Approaches)

  • 이만형;유선아
    • 한국과학교육학회지
    • /
    • 제40권3호
    • /
    • pp.321-336
    • /
    • 2020
  • 본 연구는 실제 교실에서 이루어진 학생의 과학 논증과정을 기계학습을 활용한 자동 채점에 적용함으로써, 논증 자동 채점의 가능성 및 개선 방향을 탐색한다. 분자 구조에 대한 고등학생의 과학 논증수업 중 발생한 2,605개의 모든 발화를 대상으로 연구를 진행하였다. 지도 학습을 위해 5가지의 논증 요소로 발화를 분류하였고, 분류된 발화를 대상으로 텍스트 전처리를 수행하였다. 전처리된 학생 발화를 활용하여 서포트 벡터 머신, 의사결정나무, 랜덤 포레스트, 인공신경망의 기계 학습 방법으로 자동 채점 모델을 구성하였다. 불용어 처리가 되지 않은 학생 발화를 활용한 자동 채점의 결과 랜덤 포레스트의 정확도는 65.96%, kappa는 0.5298의 유미한 결과를 얻었다. 불용어 처리를 수행한 학생 발화를 활용한 새로운 채점 모델의 결과 채점의 정확도가 크게 변화하지 않음에도 논증 발화 중 과학 용어 및 논증 요소의 담화표지가 채점 모델의 분류 기준이 되는 결과를 얻었다. 또한 인간 전문가의 논증 채점 과정을 분석하여 얻어진 전문가 형태소를 자동 채점 모델에 생성 규칙 알고리즘으로 적용하였다. 그 결과 의사결정나무에서 반박에 대한 재현율(recall)이 21.74% 증가하였다. 이에 본 연구 결과는 과학 교육 연구에서 기계 학습 및 논증에 대한 자동 채점의 활용 가능성과 연구 방향성을 제안하였다.

랜섬웨어 탐지를 위한 동적 분석 자료에서의 변수 선택 및 분류에 관한 연구 (A study on variable selection and classification in dynamic analysis data for ransomware detection)

  • 이승환;황진수
    • 응용통계연구
    • /
    • 제31권4호
    • /
    • pp.497-505
    • /
    • 2018
  • 최근 랜섬웨어는 일반 PC 사용자에 비해 상대적으로 수준 높은 보안 체계를 갖추고 있는 기업과 정부 기관에 침입하여 상당한 피해를 입히는 등 기존 보안 체계의 허점을 찾아 진화하는 모습을 보이고 있다. 이처럼 계속해서 변화하는 랜섬웨어를 탐지하기 위해 랜섬웨어의 특징을 파악하는 정적 분석과 동적 분석과 관련된 연구가 활발히 이루어지고 있다. 본 연구에서는 582개의 랜섬웨어 샘플과 942개의 정상 샘플 프로그램을 쿠쿠 샌드박스 가상환경 내에서 실행시킨 뒤, PC에서 이루어지는 30,967가지의 행동 여부를 기록한 동적 분석 자료를 활용하여 랜섬웨어 분류에 유의한 변수를 탐색하기 위한 여러 변수 선택 방법의 적용과 랜섬웨어 분류를 위한 기계학습 모형들을 구축하고자 하였다. 변수 선택법으로 LASSO와 이항변수 만으로 이루어진 고차원 자료라는 특성을 활용하기 위한 카이제곱검정을 이용한 변수 선택, 선행 연구에서 이용된 방법인 상호정보를 이용한 변수 선택법을 적용하였으며 기계 학습 모형으로는 능형 로지스틱 회귀, 서포트 벡터 머신, 랜덤 포레스트, XGBoost가 활용되었다. 연구 결과, 정상 프로그램과 구별되는 랜섬웨어 프로그램만의 특징적인 행동을 확인할 수 있었으며 여러 변수 선택법과 기계학습 분류 모형들의 조합 중, 주어진 자료에서 카이제곱검정을 이용한 변수 선택법과 랜덤 포레스트 모형의 조합이 가장 높은 탐지율과 정분류율을 보이는 것을 확인하였다.

OFDM 시스템에서 PAPR 처감을 위한 SPW 방식의 설계와 성능 분석 (Design and Performance Analysis of the SPW Method for PAPR Reduction in OFDM System)

  • 이재은;유흥균;정영호;함영권
    • 한국전자파학회논문지
    • /
    • 제14권7호
    • /
    • pp.677-684
    • /
    • 2003
  • OFDM에서 PAPR(peak-to-average power ratio) 저감에 효과적인 SPW(subblock phase weighting) 방법을 연구하였다. 이 방법은 OFDM 신호 블록을 여러 개의 하부 블록으로 나누고 하부 블록별로 위상을 적절히 조절하여 peak power를 낮추는 것이다. SPW는 하나의 IFFT로 구현할 수 있어 시스템의 복잡도를 낮출 수 있다. 인접, 인터리브드, 랜덤 subblock분할 방법을 적용하여 PAPR저감 성능을 분석하였다 랜덤 subblock분할 방법이 가장 우수한 PAPR 저감성능을 보인다. SPW에서 하부 블록의 수가 증가할수록 효과적인 PAPR 저감성능을 보이지만 반복 탐색 횟수가 증가하여 처리 시간이 길어진다. 본 논문에서는 새로이 상보 시퀀스 특성의 weighting factor조합을 임계치 기법과 혼합하여 사용하므로 처리시간 문제를 해결한다. weighting factor에 대 한 부가 정보를 fed forward 형태로 전송하므로 데이터를 복원할 수 있으며, BER 성능을 분석하였다.

부도예측을 위한 KNN 앙상블 모형의 동시 최적화 (Investigating Dynamic Mutation Process of Issues Using Unstructured Text Analysis)

  • 민성환
    • 지능정보연구
    • /
    • 제22권1호
    • /
    • pp.139-157
    • /
    • 2016
  • 앙상블 분류기란 개별 분류기보다 더 좋은 성과를 내기 위해 다수의 분류기를 결합하는 것을 의미한다. 이와 같은 앙상블 분류기는 단일 분류기의 일반화 성능을 향상시키는데 매우 유용한 것으로 알려져 있다. 랜덤 서브스페이스 앙상블 기법은 각각의 기저 분류기들을 위해 원 입력 변수 집합으로부터 랜덤하게 입력 변수 집합을 선택하며 이를 통해 기저 분류기들을 다양화 시키는 기법이다. k-최근접 이웃(KNN: k nearest neighbor)을 기저 분류기로 하는 랜덤 서브스페이스 앙상블 모형의 성과는 단일 모형의 성과를 개선시키는 데 효과적인 것으로 알려져 있으며, 이와 같은 랜덤 서브스페이스 앙상블의 성과는 각 기저 분류기를 위해 랜덤하게 선택된 입력 변수 집합과 KNN의 파라미터 k의 값이 중요한 영향을 미친다. 하지만, 단일 모형을 위한 k의 최적 선택이나 단일 모형을 위한 입력 변수 집합의 최적 선택에 관한 연구는 있었지만 KNN을 기저 분류기로 하는 앙상블 모형에서 이들의 최적화와 관련된 연구는 없는 것이 현실이다. 이에 본 연구에서는 KNN을 기저 분류기로 하는 앙상블 모형의 성과 개선을 위해 각 기저 분류기들의 k 파라미터 값과 입력 변수 집합을 동시에 최적화하는 새로운 형태의 앙상블 모형을 제안하였다. 본 논문에서 제안한 방법은 앙상블을 구성하게 될 각각의 KNN 기저 분류기들에 대해 최적의 앙상블 성과가 나올 수 있도록 각각의 기저 분류기가 사용할 파라미터 k의 값과 입력 변수를 유전자 알고리즘을 이용해 탐색하였다. 제안한 모형의 검증을 위해 국내 기업의 부도 예측 관련 데이터를 가지고 다양한 실험을 하였으며, 실험 결과 제안한 모형이 기존의 앙상블 모형보다 기저 분류기의 다양화와 예측 성과 개선에 효과적임을 알 수 있었다.

테이크아웃 음식의 안전에 대한 고객인식도 측정을 위한 척도에 관한 연구 (An Instrument for Measuring Take-out Food Safety Perception)

  • 김학선
    • 한국조리학회지
    • /
    • 제18권2호
    • /
    • pp.82-90
    • /
    • 2012
  • 외식산업에서 테이크아웃 음식이 대중화 되고 있으며 이에 대한 다양한 전략이 꾸준히 수립되어야 하며 이에 대한 고객의 인식을 살펴보는 연구가 필요하다. 따라서 본 연구는 테이크아웃 음식의 위생에 대한 고객의 인식도를 측정하기 위한 척도의 타당도와 신뢰도를 평가하고자 수행되었다. 온라인 서베이를 통해 324개의 응답을 확보하였고 이중 불성실하게 기입된 응답을 제외하고 299개의 데이터를 분석에 사용하였다. 데이터는 랜덤하게 2개의 세트 ($n_1$=150, $n_2$=149)로 분할되었고, 1차 데이터는 탐색적 요인분석에 2차 데이터는 확인적요인 분석에 사용되었다. 탐색적 요인분석을 실시한 결과 세 개의 요인이 추출되었으며, 이를 "Consumer food safety perception," "Take-out food handling," and "Elements impacting on purchase decisions." 라고 명명하였다. 이어 실시된 확인적 요인분석의 결과는 본 연구에서 제시된 척도가 신뢰도와 타당도가 높으며 고객의 위생에 대한 인식을 측정하는 적절한 도구임을 보여주었다.

  • PDF