• Title/Summary/Keyword: 라멘

Search Result 148, Processing Time 0.03 seconds

Quantity survey system for column-beam structure comprised of composite precast concrete members (합성 PC 라멘조를 위한 물량산출 시스템)

  • Lim, Chaeyeon;Kim, Sunkuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.48-49
    • /
    • 2014
  • Green Frame is a column-beam system that uses composite precast concrete members. Previous studies have proven this system to be not only structurally safe, constructible, and economically feasible, but also environmentally-friendly. If the computerized program is used to estimate the quantity, the result of it shall be calculated much easily, quickly and exactly than manual estimation, because precast concrete members of Green Frame has standard size and connection method between it. Therefore, this study suggest quantity survey concept for column-beam structure comprised of composite precast concrete members. Hereafter, the quantity survey of Green Frame shall be much quickly and accurate, if the system would be made based on the result of this study.

  • PDF

Preliminary study on the Review Project Viability to Rahmen Structure (라멘조 공법의 사업성 검토에 관한 기초연구)

  • Lee, Sung-Ho;Joo, Jin-Kyu;Lee, Goon-Jae;Kim, Sun-Kuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.139-140
    • /
    • 2011
  • The government encourages adoption of Rahmen structure design to ensure efficient management of national resources. However, in comparison with bearing-wall structure, Rahmen structure requires higher unit construction cost and present challenges in terms of securing adequate floor area ratio and floor height. That is why project clients have been disinterested in adoption of Rahmen structure design. Therefore, we have attempted to find factors having influence on decline of project viability for Rahmen structure. This study will be utilized as a basic reference study for promotion of Green Frame design which is a composite PC structure already developed.

  • PDF

Panel Zone Behavior of Steel Box Connections (Box단면 접합부의 Panel Zone 거동특성)

  • Hwang, Won Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.4 s.33
    • /
    • pp.683-695
    • /
    • 1997
  • This paper presents the shear behavior of panel zone in steel frame piers. The results of loading tests on twenty box connections and three types of analysis model are reported herein. It is indicate that the major cause of the reduction of strength and shear deformation capacity (ductility) is the sectional-area ratio and the shear buckling of panel zone. Based on the results, some new proposals are presented for the evalution of strength and ductility of panel zone. This paper is also discussed the ductility of connections by current design procedure.

  • PDF

Mitigating Seismic Response of RC Framed Apartment Building Using Isotropic Hysteretic Steel Dampers (등방성 이력형 강재댐퍼를 이용한 RC 라멘조 아파트건물의 지진응답 개선)

  • Chun, Young-Soo;Bang, Jong-Dae
    • Land and Housing Review
    • /
    • v.5 no.2
    • /
    • pp.107-114
    • /
    • 2014
  • Passive energy dissipation systems for seismic applications have been under development for a number of years with a rapid increase in implementations starting in the mid-1990s in many countries. A metallic hysteretic damper has most commonly been used for seismic protection of structures in domestic area because they present high energy-dissipation potential at relatively low cost and easy to install and maintain. This paper presents an analytical case study of the effectiveness of isotropic hysteretic metallic damper(IHMD) called Kagome as a passive dissipative device in reducing structural response during seismic excitation. An eighteen-story RC framed apartment building is studied with and without IHMD. Results demonstrate the feasibility of these techniques for seismic mitigation. The inclusion of supplemental passive energy dissipation devices in the form of IHMD proved to be a very effective method for significantly reducing the seismic response of the building investigated.

Optimal Design of Passive TMD for Seismic Behavior Control of Spacial Structures (공간구조물의 지진동제어를 위한 TMD의 최적설계)

  • Kim, Gee-Cheol;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.11 no.2
    • /
    • pp.81-88
    • /
    • 2011
  • The studies of seismic response control are mainly conducted on rahmen structure until now. Spatial structures have the different dynamic characteristics from general rahmen structures. So, the results of these studies are very limited for vibration control and seismic design of spatial structures. TMD(Tuned Mass Damper) is one of the vibration control device that is mainly used to reduce the vibration level of high-rised building, bridge or stadium structure. In this study, an arch structure was used as an example structure because it has primary characteristics of spatial structures and the seismic behaviour of spatial structures may fundamentally differ from the conventional building structures. So, the vibration control performance is evaluated according to the change of TMD mass and TMD location. It is reasonable to install TMD at the quarter point that is dominant mode vector of 1st mode, And it is appropriate that TMD mass ratio is 2% in the seismic response control of arch structure.