• Title/Summary/Keyword: 라돈

Search Result 374, Processing Time 0.03 seconds

A Realistic Human Exposure Assessment of Indoor Radon released from Groundwater (지하수로부터 방출된 라돈에 의한 현실적인 체내축적량 평가)

  • Yu, Dong-Han;Han, Moon-Hee
    • Journal of Radiation Protection and Research
    • /
    • v.27 no.2
    • /
    • pp.121-126
    • /
    • 2002
  • The work presents a realistic human exposure assessment of indoor radon released from groundwater in a house. At first, a two-compartment model is developed to describe the generation and transfer of radon in indoor air from groundwater. The model is used to estimate radon concentrations profile of indoor air in a house us]ng by showering, washing clothes, and flushing toilets. Then, the study performs an uncertainty analysis of model input parameters to quantify the uncertainty in radon concentration profile. In order to estimate a daily internal dose of a specific tissue group in an adult through the inhalation of such indoor radon, 3 PBPK(Physiologically-Based Pharmaco-Kinetic) model is developed. Combining indoor radon profile and PBPK model is used to a realistic human assessment for such exposure. The results obtained from this study would be used to the evaluation of human risk by inhalation associated with the indoor radon released from groundwater.

Radon Blocking Effect of Mask used in Everyday Life (일상생활에서 사용하는 마스크의 라돈 차단 효과)

  • Cheon, Se-Hyeon;Lee, Yong-Ki;Ahn, Sung-Min
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.3
    • /
    • pp.313-318
    • /
    • 2020
  • Since radon is an inert gas and is a monoatomic molecule, the size of one particle represents the size of an atom, which means that it has a radius of approximately 1 to 100 nm. Therefore, if the mask has a radius smaller than the size of general fine dust and ultra fine dust, but it is possible to block the inhalation of radon more than a certain amount, it is considered that the exposure through the inhalation of radon can be reduced through normal indoor wear. Accordingly, we would like to find out the radon blocking effect of a mask worn in everyday life. Looking at the reduction rate of radon for each mask, cotton masks decreased by 33.45%, medical masks by 33.50%, KF 80 masks by 35.12%, and KF 94 masks by 37.72%. It was found that the radon blocking effect of the cotton and medical masks was somewhat inferior to that of the KF mask, but the difference was not so great that the introduction of radon into the air could be blocked to a certain level by wearing a mask.

Measurement of Radon Concentration in the near-surface Soil Gas by CR-39 Detectors (CR-39를 사용한 제주도지역 토양중의 라돈측정)

  • Kang, D.W.;Kim, H.G.
    • Journal of Radiation Protection and Research
    • /
    • v.13 no.2
    • /
    • pp.57-66
    • /
    • 1988
  • A series of experiments is performed to measure radon concentration in the near-surface soil gas at the four locations (Cheju-Si, Seoguipo-Si, Taejeong-eup, Seongsan-eup) in Cheju Island, using CR-39 detectors placed inside radon cups. Two types of radon cups are installed in shallow holes of about 15 cm in diameter and 50cm in depth. The optimum etching conditions, i.e., the concentration of NaOH solution, etchant temperature and etching time, are found to be 625N, $70^{\circ}C$ and 5.5 hours for CR-39 detectors. A typical conversion factor of radon cup is calculated as $$1track/mm^3{\cdot}30day=0.059Bq/{\ell}$$. Average radon concentrations over 30 days measured in Cheju Island from May 1, 1987 to April 23, 1988 are $3.1{\pm}0.3Bq/{\ell}$ for open radon cups and $1.7{\pm}0.2Bq/{\ell}$ for closed radon cups.

  • PDF

Radon Concentration at N-Kindergarten in G-City (G광역시 N유치원의 라돈 농도)

  • Park, Yun;Kim, Wonjun
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.6
    • /
    • pp.421-424
    • /
    • 2015
  • In this study, To subject the constructed at N-kindergarten in G-city, the position is closed window and opened window was measured using a measuring instrument for radon. The measured results indicate that the measurement was carried out in concentrations of radon gas measured at N-kindergarten is low than United States in the radon concentration in air public 4pCi called radon gas baseline maximum allowable concentrations. As a result, radon exposure is not a problem, but when the accumulation radon gas in the lungs, get damaged same lung cancer. Be defensive of kindergarten windows open for ventilation and dust removal be possible to reduce the exposure.

An Analysis of Anomalous Radon Variation Caused by M5.8 Gyeong-ju Earthquake (규모 5.8 경주 지진에 의한 토양 내 라돈농도의 이상변화 분석)

  • Kim, Jin-seop;Kim, Minjun;Kim, Sunwoong;Lee, Hyomin
    • Economic and Environmental Geology
    • /
    • v.51 no.1
    • /
    • pp.1-13
    • /
    • 2018
  • The radon concentration in soil varies with environmental factors such as atmospheric temperature and pressure, rainfall and soil temperature. The effects of these factors, therefore, should be differentiate in order to analyzed the anomalous radon variation caused by earthquake events. For these reasons, a comparative analysis between the radon variations with environmental factors and the anomalous variations caused by Gyeong-ju earthquake occurred in September 12, 2016 has been conducted. Radon concentration in soil and environmental factors were continuously measured at a monitoring ste located in 58Km away from earthquake epicenter from January 01, 2014 to May 31, 2017. The co-relationships between radon concentration and environmental factors were analyzed. The seasonal average radon concentration(n) and the standard variation(${\rho}$) was calculated, and the regions of ${\pm}1{\rho}$ and ${\pm}2{\rho}$ deviations from seasonal average concentration were investigated to find the anomalous radon variation related to Gyeong-ju earthquake. Earthquake effectiveness and q-factor were also calculated. The radon concentration indicated the seasonal variation pattern, showing high in summer and low in winter. It increases with increasing air temperature and soil temperature, and has the positive co-relationships of $R^2=0.9136$ and $R^2=0.8496$, respectively. The radon concentration decreases with increasing atmospheric pressure, and has the negative co-relationships of $R^2=0.7825$. Four regions of ${\pm}2{\rho}$ deviation from average seasonal concentration (A1: 7/3~7/5, A2: 7/18, A3: 8/4~8/5, A4: 10/17~10/20) were detected before and after Gyeong-ju earthquake. A1, A2, A3 were determined as the anomalous radon variation caused by the earthquake from co-relationship analyses with environmental factors, earthquake effectiveness and q-factor. During the period of anomalous radon variation, correlation coefficients between radon concentration and environmental factors were significantly lowered compared to other periods such as air temperature ($R^2=0.2314$), soil temperature ($R^2=0.1138$) and atmospheric pressure ($R^2=0.0475$). Annual average radon concentration was also highest at 2016, the year of Gyeong-ju earthquake.

Basic study on development of the radon measurement system in groundwater stations for the seismic monitoring and prediction (지진모니터링과 예측을 위한 지하수관측소내 라돈 측정시스템 개발 기초연구)

  • Jang, Suk Hwan;Lee, Jae-Kyoung;Lee, Sang Yoon;Oh, Kyung Doo
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.7
    • /
    • pp.507-519
    • /
    • 2020
  • This study developed the radon measurement system that can be used for crustal movement monitoring and seismic occurrence and prediction, and compared and analyzed the results of test-operated radon measurement system and observed seismic occurrence cases. First, the developed radon measurement system consists of an NB-IoT radon measurement device, data center, data analysis, and data supply server. Because the measured radon data can be remotely trasmitted by using NB-IoT, this system is very suitable for installation and operation in unmaaned groundwater station. Second, the developed radon measurement device was test-operated at two groundwater stations in Gimpo from May to July 2019. The measured radon data was compared with the groundwater-level and electrical conductivity measurement data, and it was confirmed that the radon measurement device developed in this study has some potential for commercialization. Finally, from November 2019 to February 2020, three observed seismic cases and daily measured radon, groundwater-level, electrical conductivity data by the NB-IoT radon measurement device installed at three groundwater stations in Pohang, which is a test-bed, were compared and analyzed. As a result of the analysis, it was confirmed that the seismic occurrence correlated with radon, groundwater level, and electrical conductivity and all of these measured data will be able to provide basic data to help in seismic monitoring and prediction in the future.

Effective Dose Equivalent due to Inhalation of Indoor Radon-222 Daughters in Korea (한국인의 라돈-222 자핵종 호흡 실효선량당량 평가)

  • Chang, Si-Young;Ha, Chung-Woo;Lee, Byoung-Hun
    • Journal of Radiation Protection and Research
    • /
    • v.16 no.1
    • /
    • pp.1-13
    • /
    • 1991
  • Effective dose equivalents resulting from inhalation of indoor radon-222 daughters at 12 residential areas in Korea were assessed by a simple mathematical lung dosimetry model based on the measurements of long-term averaged radon concentrations at 340 dwellings. The long-term averaged indoor radon-222 concentrations and corresponding eqilibrium equivalent radon $concentration(EEC_{Rn})$ measured by passive time-integrating CR-39 radon cups are in the range of $33.82{\sim}61.42Bq/m^3(median\;:\;48.90Bq/m^3)$ and of $13.53{\sim}24.57Bq/m^3(median\;:\;19.55Bq/m^3)$, respectively. The effective dose equvalent conversion factor for the exposure to unit $EEC_{Rn}$ derived in this study was estimated $1.07{\times}10^{-5}mSv/Bq\;h\;m^{-3}$ for a reference adult and agreed well with those recommended by the ICRP and UNSCEAR. The annual average dose equivalent to the lung $(H_{LUNG})$ from inhalation exposure to measured $EEC_{Rn}$ was estimated to be 20.90 mSv and resulting effective dose $equivalent(H_E)$ was to be 1.25 mSv, which is about 50% of the natural radiation exposure of 2.40 mSv/y to the public reported by the UNSCEAR.

  • PDF

Numerical Study on Indoor Dispersion of Radon Emitted from Building Materials (건축자재로부터 방출되는 라돈의 실내 확산에 대한 수치해석적 연구)

  • Park, Hoon Chae;Choi, Hang Seok;Cho, Seung Yeon;Kim, Seon Hong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.5
    • /
    • pp.325-332
    • /
    • 2014
  • Growing concerns about harmful influence of radon on human body, many efforts are being made to decrease indoor radon concentration in advanced countries. To develop an indoor radon reduction technology, it is necessary to develop a technology to predict and evaluate indoor inflow and emission of radon. In line with that, the present study performed computational modelling of indoor dispersion of radon emitted from building materials. The computational model was validated by comparing computational results with analytical results. This study employed CFD (Computational Fluid Dynamics) analysis to evaluate the radon concentration and the airflow characteristics. Air change rate and ventilation condition were changed and several building materials having different radon emission characteristics were considered. From the results, the indoor radon concentration was high at flow recirculation zones and inversely proportional to the air change rate. For the different building materials, the indoor radon concentration was found to be highest in cement bricks, followed by eco-carats and plaster boards in the order. The findings from this study will be used as a method for selecting building materials and predicting and evaluating the amount of indoor radon in order to reduce indoor radon.

Assessment of Indoor Radon Pollution from Underground Water (지하수로부터의 라돈 실내오염 평가)

  • 유동한;김상준
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2000.11a
    • /
    • pp.130-131
    • /
    • 2000
  • 라돈(Rn-222)은 우라늄(U-238) 방사능계열의 원소로서 라듐(Ra-226)의 붕괴시 자연생성되는 가스상 물질이다. 화학적으로는 불활성이며 무색, 무취의 특성을 가지고 있다. 공기보다 8∼9배 무겁기 때문에 지표면 가깝게 존재하므로 인체노출이 쉬운 물질로 알려져 있다. 라돈은 최근까지도 온천 등지에서 건강에 매우 좋은 원소로 알려져 왔으나 사실은 기준치 이상의 라돈을 마시거나 호흡했을 경우, 치명적인 폐암을 유발시킨다는 것이 밝혀졌다(Doull et al, 1999) (중략)

  • PDF

Ambient Air Radon Concentrations of Characteristic in Korea (국내 대기중 라돈농도의 특성)

  • ;;;;;T. lida;K. Yoshioka
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 1999.10a
    • /
    • pp.50-51
    • /
    • 1999
  • 라돈($^{222}R$)은 암석이나 토양 같은 지각물질에서 발생되는 3.82일의 반감기를 가진 자연 방사선물질로 1980년대 중반부터 미국을 비롯한 유럽의 선진국에서 환경적인 측면에서 라돈의 관심이 증대되었다. 한편, 국내에서의 라돈에 관한 연구는 실내공기질 분야에서 진행되고 있으나 대기환경적 측면에서의 종합적이고 체계적인 연구가 활발히 이루어지지 않고 있는 실정이다.(중략)

  • PDF