DOI QR코드

DOI QR Code

Basic study on development of the radon measurement system in groundwater stations for the seismic monitoring and prediction

지진모니터링과 예측을 위한 지하수관측소내 라돈 측정시스템 개발 기초연구

  • Received : 2020.05.13
  • Accepted : 2020.05.26
  • Published : 2020.07.31

Abstract

This study developed the radon measurement system that can be used for crustal movement monitoring and seismic occurrence and prediction, and compared and analyzed the results of test-operated radon measurement system and observed seismic occurrence cases. First, the developed radon measurement system consists of an NB-IoT radon measurement device, data center, data analysis, and data supply server. Because the measured radon data can be remotely trasmitted by using NB-IoT, this system is very suitable for installation and operation in unmaaned groundwater station. Second, the developed radon measurement device was test-operated at two groundwater stations in Gimpo from May to July 2019. The measured radon data was compared with the groundwater-level and electrical conductivity measurement data, and it was confirmed that the radon measurement device developed in this study has some potential for commercialization. Finally, from November 2019 to February 2020, three observed seismic cases and daily measured radon, groundwater-level, electrical conductivity data by the NB-IoT radon measurement device installed at three groundwater stations in Pohang, which is a test-bed, were compared and analyzed. As a result of the analysis, it was confirmed that the seismic occurrence correlated with radon, groundwater level, and electrical conductivity and all of these measured data will be able to provide basic data to help in seismic monitoring and prediction in the future.

본 연구에서는 지각운동 모니터링과 지진발생 및 예측에 활용가능한 라돈 측정시스템을 개발하였으며, 라돈 측정시스템의 시범운영 결과와 지진발생 사례를 분석하였다. 첫 번째로, 개발된 라돈 측정시스템은 NB-IoT 라돈 측정기기, 데이터센터, 자료분석 및 자료제공 서버로 구성되며, NB-IoT를 활용하므로 측정된 자료의 원격전송이 가능하기 때문에 이 시스템은 무인 지하수관측소에 설치 및 운영에 매우 적합하다. 두 번째로 개발된 라돈 측정기기를 김포지역 지하수관측소에서 2019년 5월부터 7월까지 시범운영하였다. 측정된 라돈값을 지하수위와 전기전도도 측정자료와 비교하였으며, 본 연구에서 개발한 라돈 측정기기가 상용화하는데 어느 정도 가능성이 있음을 확인하였다. 마지막으로 2019년 11월부터 2020년 2월까지 3개 지진발생 사례와 Test-bed인 포항지역 지하수관측소에 설치된 NB-IoT 라돈 측정기기의 일단위 라돈 측정값, 일단위 지하수위, 일단위 전기전도도의 변동성을 비교·분석하였다. 분석결과, 지진발생이 라돈, 지하수위, 전기전도도와 어느 정도 상관관계가 있음을 확인하였으며, 본 측정자료가 향후 지진모니터링 및 예측에 도움이 되는 기초자료 제공이 가능함을 확인하였다

Keywords

References

  1. Adinolfi Falcone, R., Carucci V., Falgiani, A., Manetta, M., Parisse, B., Petitta, M., Rusi, S., Spizzico, M., and Tallini, M. (2012). "Changes on groundwater flow and hydrochemistry of the Gran Sasso carbonate aquifer after 2009 L'Aquila earthquake." Italian Journal of Geosciences, Vol. 131, No. 3, pp. 459-474.
  2. Chadha, R.K., Kuempel, H.J., and Shekar, M. (2008). "Reservoir triggered seisimicity and well water level response in the Koyna-warna region, India." Tectonophysics, Vol. 456, No. 1-2, pp. 94-102. https://doi.org/10.1016/j.tecto.2006.11.010
  3. Chaudhuri, H., Barman, C., Sekar Iyengar, A.N., Ghose, D., Sen P., and Sinha, B. (2013). "Network of seismo-geochemical monitoring observatories for earthquake prediction research in India." Acta Geophysica, Vol. 61, No. 4, pp. 1000-1025. https://doi.org/10.2478/s11600-013-0134-0
  4. Che, Y., and Yu, J. (1992). "The statistical characteristics of groundwater level anomaly before some moderatestrong earthquakes in the Eastern China continent." Seismological Geology, Vol. 14, No. 1, pp. 23-29. (in Chinese with English abstract).
  5. Chia, Y., Wang, Y.S., Chiu, J.J., and Liu, C.W. (2001). "Changes of groundwater level due to the 1999 chi-chi earthquake in the Choshui river alluvial fan in Taiwan." Bulletin of the Sesimological Society of America, Vol. 91, No. 5, pp. 1062-1068.
  6. Cicerone, R.D., Ebel, J.E., and Britton, J. (2009). "A systematic compilation of earthquake precursors." Tectonophysics, Vol. 476, No. 3-4, pp. 371-396. https://doi.org/10.1016/j.tecto.2009.06.008
  7. Das, N.K., Chouldhury, H., Bhandari, R.K., Chose, D., Sen, P., and Sinha, B. (2006). "Continuous monitoring of $^{222}Rn$ and its progeny at a remote station for seismic hazard surveillance." Radiation Measurements, Vol. 41, No. 5, pp. 634-637. https://doi.org/10.1016/j.radmeas.2006.03.003
  8. Igarashi, G., Saeki, S., Takahata, N.M., Sumikawa, K., Tasaka, S., Sasaki, Y., Takahashi, M., and Sano, Y. (1995). "Ground-water radon anomaly before the Kobe earthquake in Japan." Science, Vol. 269, pp. 60-61. https://doi.org/10.1126/science.269.5220.60
  9. King, C.-Y., Zhang, W., and Zhang, Z. (2006). "Earthquake induced groundwater and gas changes." Pure and Applied Geophysics, Vol. 163, pp. 633-645. https://doi.org/10.1007/s00024-006-0049-7
  10. Kitagawa, G., and Matsumoto, N. (1996). "Detection of coseismic changes of underground water level." Journal of American Statistical Assocication, Vol. 91, pp. 521-528. https://doi.org/10.1080/01621459.1996.10476917
  11. Korea Meteorological Administration (KMA) (2010). Monitoring radon as a portent of earthquakes. CATER 2010-5304, Korea Meteorological Administration.
  12. Lee, H.A., Kim, M., Hong, T.-K., and Woo, N.C. (2011). "Earthquake observation through groundwater monitoring: A case of M4.9 Odaesan earthquake." Journal of Soil and Groundwater Environment, Vol. 16, No. 3, pp. 38-47. https://doi.org/10.7857/JSGE.2011.16.3.038
  13. Manga, M., and Wang, C.-Y. (2007). Earthquake Hydrology. Chapter 4.10, Elsevier, pp. 293-320.
  14. Ok, S.-I., Hamm, S.-Y., Kim, B.-S., Cheong, J.-Y., Woo, N.-C., Lee, S.-H., Koh, G.-W., and Park, Y.-S. (2010). "Characteristics of aquifer system and change of groundwater level due to earthquake in the western half of Jeju Island." Economic and Environmental Geology, Vol. 43, No. 4, pp. 359-369.
  15. Tiwari, R.K., Lakshmi, S.S., and Rao, K.N.N. (2004). "Characterization of earthquake dynamics in Northeastern India regions: A modern nonlinear forecasting approach." Pure and Applied Geophysics, Vol. 161, pp. 865-880. https://doi.org/10.1007/s00024-003-2476-z
  16. Wang, K., Chen, Q.-F., Sun, S., and Wang, A. (2006). "Predicting the 1975 Haicheng earthquake." Bulletin of the Seismological Society of America, Vol. 96, No. 3, pp. 757-795. https://doi.org/10.1785/0120050191
  17. Woo, N.C., Piao, J., Lee, J.-M., Lee, C.-J., Kang, I.-O., and Choi, D.-H. (2015). "Abnormal changes in groundwater monitoring data due to small-magnitude earthquakes." Journal of Engineering Geology, Vol. 25, No. 1, pp. 21-33. https://doi.org/10.9720/kseg.2015.1.21