• Title/Summary/Keyword: 딥러닝 시스템

Search Result 1,319, Processing Time 0.033 seconds

Development of Illegal Parking Detection System for Electric Vehicle Charging Station (전기차 충전소 불법주차 탐지 시스템 개발)

  • Im, Hyo-Gyeong;Lee, Sang-Min;Ju, Eun-Su;Park, Seong-Ik;Jeon, Chan-Ho;Jung, Young-Seok
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.01a
    • /
    • pp.315-316
    • /
    • 2022
  • 최근 전 세계적인 탄소 중립 정책으로 인해 전기차 보급 속도는 예상보다 훨씬 빠르게 증가하고 있다. 하지만 늘어나는 수요에 비해 전기차 충전기 수는 턱없이 부족하다. 그뿐만 아니라 일반 차들의 전기차 충전소 불법주차로 인해 전기차가 충전하지 못하는 불편함이 발생하고 있다. 본 논문에서는 에지 컴퓨터(edge computer)와 딥러닝 기반 객체 감지 시스템 YOLO(You only look once)를 이용한 전기차 충전소 불법주차 방지 시스템을 개발한다. 먼저, 이 시스템은 카메라를 통해 실시간으로 영상을 받아 YOLO를 이용하여 차량 번호판 인식이 되면 전기차 번호판의 특정 마크를 인식하여 전기차인지 일반 차인지를 판별하여 판별된 값에 따라 주차 차단기가 작동되는 시스템이다. 전기차이면 차단기가 내려가서 충전소를 이용할 수 있게 하고 일반차일 경우 주차 차단기가 내려가지 않고 막아 불법주차를 차단한다. 이와 같은 기술을 활용하여 전기차 충전소 불법주차 방지에 기여하고자 한다.

  • PDF

Implementation of Intelligent Zero-Energy Building Management System For Carbon Neutral Port (탄소중립 항만 구현을 위한 지능형 제로에너지 건물 관리시스템)

  • Lee, JinKyu;Kang, DongJea;Jung, Hyungjin;Kim, In-Soo
    • Annual Conference of KIPS
    • /
    • 2022.11a
    • /
    • pp.1038-1040
    • /
    • 2022
  • 지속적인 지구 평균 기온 상승으로 인해 우리나라를 포함한 전 세계적으로 탄소중립을 위한 혁신이 이루어지고 있다. 본 연구는 해양수산부 '해양수산분야 2050 탄소중립 로드맵'의 기준에 따라 에너지 자립률을 극대화하고 효율을 최적화시킨 제로에너지 탄소중립 건축물을 제시한다. 태양광 발전 시스템에서, 패널의 태양 일주추적 기능을 통해 에너지 발전률을 극대화하고, 패널 하향정렬 및 딥러닝 모델을 통해 유지 보수를 용이하게 하여 성능 저하를 예방한다. 폐열을 이용한 열 회수/바이패스 환기 시스템을 통해 에너지 효율을 최적화하고, 온/습도에 가중치를 부여하여 모호했던 환기 시스템 결정 기준을 에너지 효율화에 맞게 최적화해 제시한다. 탄소중립 BEMS 기능이 내재된 앱 개발로 위의 건축물 시스템을 제어·관리한다. 본 연구를 통해 제로 에너지 건축물으로서 항만 건물의 가능성을 제고하고, 탄소중립 항만의 구현을 기대한다.

Change Attention-based Vehicle Scratch Detection System (변화 주목 기반 차량 흠집 탐지 시스템)

  • Lee, EunSeong;Lee, DongJun;Park, GunHee;Lee, Woo-Ju;Sim, Donggyu;Oh, Seoung-Jun
    • Journal of Broadcast Engineering
    • /
    • v.27 no.2
    • /
    • pp.228-239
    • /
    • 2022
  • In this paper, we propose an unmanned vehicle scratch detection deep learning model for car sharing services. Conventional scratch detection models consist of two steps: 1) a deep learning module for scratch detection of images before and after rental, 2) a manual matching process for finding newly generated scratches. In order to build a fully automatic scratch detection model, we propose a one-step unmanned scratch detection deep learning model. The proposed model is implemented by applying transfer learning and fine-tuning to the deep learning model that detects changes in satellite images. In the proposed car sharing service, specular reflection greatly affects the scratch detection performance since the brightness of the gloss-treated automobile surface is anisotropic and a non-expert user takes a picture with a general camera. In order to reduce detection errors caused by specular reflected light, we propose a preprocessing process for removing specular reflection components. For data taken by mobile phone cameras, the proposed system can provide high matching performance subjectively and objectively. The scores for change detection metrics such as precision, recall, F1, and kappa are 67.90%, 74.56%, 71.08%, and 70.18%, respectively.

Analysis of Vision based Technology for Smart Railway Station System (스마트 철도역사시스템 구축을 위한 영상기반 기술 분석)

  • Lee, Sang-Hak
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.5
    • /
    • pp.1065-1070
    • /
    • 2018
  • These days there are many researches on the vision based technology using deep learning. The lots of studies on the intelligent operation and maintenance for railway station system used technologies with vision analysis function. This paper analyzes the papers which studied the intelligent station system with vision analysis function for passengers and facilities monitoring, platform monitoring, fire monitoring, and effective operation and design. Also, this paper proposes research which uses the more powerful vision technology with deep-learning for smart railway station system.

Illegal parking warning system in front of electric vehicle charger (전기차 충전기앞 불법 주차 경고 영상인식 시스템)

  • Yun, Tae-Jin;Lee, Tae-Hun;Lee, Yeong-Hoon;Jeong, Yong-Ju;Kim, Jae-Yoon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.07a
    • /
    • pp.443-444
    • /
    • 2019
  • 본 논문에서는 라즈베리파이(Raspberry Pi)와 실시간 객체 감지 기술인 YOLO를 이용한 전기차충전기앞불법주차 경고 영상인식 시스템을 제안한다. 최근 전기 자동차의 사용과 더불어 충전 인프라는 점점 늘어나는 중이지만, 여전히 전기차 충전기는 많지 않은 것이 현실이다. 전국 1,000여 곳이 넘는 전기차 충전소에 대해 법령으로 인한 규제를 시행 중임에도 불구하고 불법주차를 하는 일반차 오너들은 여전히 많다. 이로 인해 전기차 오너들은 충전에 많은 불편함이 있다. 이 시스템은 전기 자동차의 번호판을 인식하여 실시간 객체 감지 딥러닝 기법인 YOLO를 이용해 전기 자동차의 번호판에 특정 부분을 인식하고 특정 부분이 없는 일반 자동차가 전기차 충전기 앞 불법 주차를 하게 되면 부저와 LED경고를 통해 주차된 일반 차량에게 경고를 하여, 불법 주차자와 더불어 주변을 지나가는 행인들에게도 전기차 앞 불법 주차에 대해 각인을 시켜줄 수 있는 시스템이다.

  • PDF

Educational Indoor Autonomous Mobile Robot System Using a LiDAR and a RGB-D Camera (라이다와 RGB-D 카메라를 이용하는 교육용 실내 자율 주행 로봇 시스템)

  • Lee, Soo-Young;Kim, Jae-Young;Cho, Se-Hyoung;Shin, Chang-yong
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.44-52
    • /
    • 2019
  • We implement an educational indoor autonomous mobile robot system that integrates LiDAR sensing information with RGB-D camera image information and exploits the integrated information. This system uses the existing sensing method employing a LiDAR with a small number of scan channels to acquire LiDAR sensing information. To remedy the weakness of the existing LiDAR sensing method, we propose the 3D structure recognition technique using depth images from a RGB-D camera and the deep learning based object recognition algorithm and apply the proposed technique to the system.

Advanced Approach for Performance Improvement of Deep Learningbased BIM Elements Classification Model Using Ensemble Model (딥러닝 기반 BIM 부재 자동분류 학습모델의 성능 향상을 위한 Ensemble 모델 구축에 관한 연구)

  • Kim, Si-Hyun;Lee, Won-Bok;Yu, Young-Su;Koo, Bon-Sang
    • Journal of KIBIM
    • /
    • v.12 no.2
    • /
    • pp.12-25
    • /
    • 2022
  • To increase the usability of Building Information Modeling (BIM) in construction projects, it is critical to ensure the interoperability of data between heterogeneous BIM software. The Industry Foundation Classes (IFC), an international ISO format, has been established for this purpose, but due to its structural complexity, geometric information and properties are not always transmitted correctly. Recently, deep learning approaches have been used to learn the shapes of the BIM elements and thereby verify the mapping between BIM elements and IFC entities. These models performed well for elements with distinct shapes but were limited when their shapes were highly similar. This study proposed a method to improve the performance of the element type classification by using an Ensemble model that leverages not only shapes characteristics but also the relational information between individual BIM elements. The accuracy of the Ensemble model, which merges MVCNN and MLP, was improved 0.03 compared to the existing deep learning model that only learned shape information.

A Beverage Can Recognition System Based on Deep Learning for the Visually Impaired (시각장애인을 위한 딥러닝 기반 음료수 캔 인식 시스템)

  • Lee Chanbee;Sim Suhyun;Kim Sunhee
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.19 no.1
    • /
    • pp.119-127
    • /
    • 2023
  • Recently, deep learning has been used in the development of various institutional devices and services to help the visually impaired people in their daily lives. This is because not only are there few products and facility guides written in braille, but less than 10% of the visually impaired can use braille. In this paper, we propose a system that recognizes beverage cans in real time and outputs the beverage can name with sound for the convenience of the visually impaired. Five commercially available beverage cans were selected, and a CNN model and a YOLO model were designed to recognize the beverage cans. After augmenting the image data, model training was performed. The accuracy of the proposed CNN model and YOLO model is 91.2% and 90.8%, respectively. For practical verification, a system was built by attaching a camera and speaker to a Raspberry Pi. In the system, the YOLO model was applied. It was confirmed that beverage cans were recognized and output as sound in real time in various environments.

Port Security Management System using IoT (IoT를 활용한 항만보안 시스템)

  • Jeong, Hong-Ju;Kim, Chae-Un;Lee, Dong-Min;Yun, Dong-Uk;Yoo, Sang-Oh
    • Annual Conference of KIPS
    • /
    • 2022.11a
    • /
    • pp.1068-1070
    • /
    • 2022
  • 우리나라의 무역 활동을 처리하는 항만은 국가 주요시설로 보안에 만전을 기하고 있다. 그러나 항만의 면적이 넓고 복잡하기 때문에 사각지대가 존재하고 사각지대에서의 불법행위 단속 건수는 매년 증가하고 있다. 이에 항만의 보안 강화를 위한 대책이 필요하다. 본 논문은 항만의 상황을 이동형 CCTV에 부착된 IoT 센서들로 인식하여 YOLOv5 딥러닝 모델로 분석한 후 웹 대시보드에 시각화하는 항만 보안 시스템을 제안한다. 이동형 CCTV는 특정 위치로 직접 이동할 수 있어 거리에 따라 해상도가 낮아지는 기존 CCTV의 단점을 보완할 수 있다. 또한 해당 시스템은 주변에서 쉽게 구할 수 있는 장비들과 오픈소스 라이브러리를 활용하기 때문에 다른 보안장비들에 비해 효율적인 비용으로 높은 보안 효과를 얻을 수 있다는 강점을 지닌다. 본 시스템은 항만시설뿐 아니라 군사시설, 물류시설 등 보안을 중요시하는 다른 분야에 확대 적용될 수 있다는 점에서 의의가 있다.

Processing Method of Unbalanced Data for a Fault Detection System Based Motor Gear Sound (모터 동작음 기반 불량 검출 시스템을 위한 불균형 데이터 처리 방안 연구)

  • Lee, Younghwa;Choi, Geonyoung;Park, Gooman
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.06a
    • /
    • pp.1305-1307
    • /
    • 2022
  • 자동차 부품의 결함은 시스템 전체의 성능 저하 및 인적 물적 손실이 발생할 수 있으므로 생산라인에서의 불량 검출은 매우 중요하다. 따라서 정확하고 균일한 결과의 불량 검출을 위해 딥러닝 기반의 고장 진단 시스템이 다양하게 연구되고 있다. 하지만 제조현장에서는 정상 샘플보다 비정상 샘플의 발생 빈도가 현저히 낮다. 이는 학습 데이터의 클래스 불균형 문제로 이어지게 되고, 이러한 불균형 문제는 고장을 판별하는 분류 모델의 성능에 영향을 끼치게 된다. 이에 본 연구에서는 모터의 동작음으로부터 불량 모터를 판별하는 불량 검출 시스템 설계를 위한 데이터 불균형 해결 방법을 제안한다. 자동차 사이드 미러 모터의 동작음을 학습 및 테스트를 위한 데이터 셋으로 사용하였으며 손실함수 계산 시 학습 데이터 셋의 클래스별 샘플 수 가 반영되는 label-distribution-aware margin(LDAM) loss 와 Inception, ResNet, DenseNet 신경망 모델의 비교 분석을 통해 불균형 데이터를 처리할 수 있는 가능성을 보여주었다.

  • PDF