In this paper, we propose the artificial vision system using human visual information processing and wavelet. Artificial vision system may be used for the visually impaired person and the machine recognition system. In this paper, we have constructed the information compression process to ganglion cells from the human retina. And we have reconstructed the primary visual information using recovery process to primary visual cortex from ganglion. Primary visual information is constructed by wavelet transformation using a high frequency and low frequency response. In the experiment, we used the faces database of AT&T. And the proposed method was able to improve the accuracy of face recognition considerably. And it was verified through experiments.
Recently, with the development of IoT technology, the number of farms using smart farms is increasing. Smart farms monitor the environment and optimise internal environment automatically to improve crop yield and quality. For optimized crop cultivation, researches on predict crop productivity are actively studied, by using collected agricultural digital data. However, most of the existing studies are based on statistical models based on existing statistical data, and thus there is a problem with low prediction accuracy. In this paper, we use various predition models for predicting the production and sales profits, and compare the performance results through models by using the agricultural digital data collected in the facility horticultural smart farm. The models that compared the performance are multiple linear regression, support vector machine, artificial neural network, recurrent neural network, LSTM, and ConvLSTM. As a result of performance comparison, ConvLSTM showed the best performance in R2 value and RMSE value.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.22
no.6
/
pp.173-178
/
2022
Recently, a recommendation system using deep learning in social network services has been actively studied. However, in the case of a recommendation system using deep learning, the cold start problem and the increased learning time due to the complex computation exist as the disadvantage. In this paper, the user-tailored exercise routine recommendation algorithm is proposed using the user's metadata. Metadata (the user's height, weight, sex, etc.) set as the input of the model is applied to the designed model in the proposed algorithms. The exercise recommendation system model proposed in this paper is designed based on the neural collaborative filtering (NCF) algorithm using multi-layer perceptron and matrix factorization algorithm. The learning proceeds with proposed model by receiving user metadata and exercise information. The model where learning is completed provides recommendation score to the user when a specific exercise is set as the input of the model. As a result of the experiment, the proposed exercise recommendation system model showed 10% improvement in recommended performance and 50% reduction in learning time compared to the existing NCF model.
Journal of the Korea Society of Computer and Information
/
v.27
no.5
/
pp.37-45
/
2022
As of 2020, about 500 hours of videos are uploaded to YouTube, a representative online video platform, per minute. As the number of users acquiring information through various uploaded videos is increasing, online video platforms are making efforts to provide better recommendation services. The currently used recommendation service recommends videos to users based on the user's viewing history, which is not a good way to recommend videos that deal with specific purposes and interests, such as educational videos. The recent recommendation system utilizes not only the user's viewing history but also the content features of the item. In this paper, we extract the content features of educational video for educational video recommendation based on YouTube, design a recommendation system using it, and implement it as a web application. By examining the satisfaction of users, recommendataion performance and convenience performance are shown as 85.36% and 87.80%.
Kim, Nam-Hoon;Kim, Dong-Gyun;Jung, Jae-Jin;Cha, Jae-Sung;Kim, Woongsup
Annual Conference of KIPS
/
2018.10a
/
pp.786-789
/
2018
우리는 가상 현실 환경에서 사람이 직접 옷을 입지 않은 상황에서 미리 피팅 상황을 확인할 수 있는 시스템을 구현하였다. 이를 위하여 우리는 시스템을 이용한 카메라 촬영과 결과를 출력하는 기능, 그리고 영상처리에서 사람 얼굴 인지, 및 그에 대한 내용을 기반으로 옷을 오버레이하는 기능을 구현하였다. 추가 기능으로는 사람 손동작 인지를 통한 커맨드 제어, 딥러닝을 이용하여 사람의 얼굴에 어울리는 옷을 추천해주는 추천 서비스를 구현하였다.
본 논문은 기존에 주어진 문장 다음에 올 수 있는 문장에 대해 딥러닝을 활용하여 예측하는 시스템이며, 데이터 전처리, 문장 목적 파악, 문맥 파악의 세가지 파트로 구성되어 있다. 전처리 과정에서는 문장에 쓰인 단어에 대한 품사 정보를 Input Feature 로 추가한다. 이어서 문장 목적 파악을 위해서는 상황별로 문장을 표현하는 방법이나 단어들의 순서가 다르기 때문에 단어의 순서보다는 문장의 특징점을 학습한다. 마지막으로 문맥 파악을 위해서 이전 단계에서 학습된 문장별 목적 데이터를 기반으로 데이터의 시간적 흐름에 대한 학습을 진행함으로써 이후에 나올 수 있는 문장을 예측한다.
Cheon, Min Jong;Choi, Hye Jin;Park, Ji Woong;Choi, HaYoung;Lee, Dong Hee;Lee, Ook
Journal of the Korea Academia-Industrial cooperation Society
/
v.22
no.3
/
pp.58-64
/
2021
As the number of registered vehicles increases, traffic congestion will worsen worse, which may act as an inhibitory factor for urban social and economic development. Through accurate traffic flow prediction, various AI techniques have been used to prevent traffic congestion. This paper uses the data from a VDS (Vehicle Detection System) as input variables. This study predicted traffic flow in five levels (free flow, somewhat delayed, delayed, somewhat congested, and congested), rather than predicting traffic flow in two levels (free flow and congested). The Catboost model, which is a machine-learning algorithm, was used in this study. This model predicts traffic flow in five levels and compares and analyzes the accuracy of the prediction with other algorithms. In addition, the preprocessed model that went through RandomizedSerachCv and One-Hot Encoding was compared with the naive one. As a result, the Catboost model without any hyper-parameter showed the highest accuracy of 93%. Overall, the Catboost model analyzes and predicts a large number of categorical traffic data better than any other machine learning and deep learning models, and the initial set parameters are optimized for Catboost.
Currently, with the development of 5G and IoT technology, it is being used in connection with the things used in real life through a network. However, attempts to use networked computers for malicious purposes are increasing, and attacks using malicious codes that infringe the confidentiality and integrity of user information are becoming more intelligent. As a countermeasure to this, research is being conducted on a method of detecting malicious packets using a security control system and AI technology, supervised learning. The cyber security control system is being operated inefficiently in terms of manpower and cost. In addition, in the era of the COVID-19 pandemic, remote work has increased, making it difficult to respond immediately. In addition, malicious code detection using the existing AI technology, supervised learning, does not detect variant malicious code, and has an inaccurate malicious code detection rate depending on the quantity and quality of data. Therefore, in this study, by converging malicious packet detection technologies through various machine learning and deep learning models, the accuracy of malicious packet detection is increased, the false positive rate and the false positive rate are reduced, and a new type of malicious packet can be efficiently detected when intrusion. We propose a malicious packet detection technology.
The Journal of the Convergence on Culture Technology
/
v.6
no.2
/
pp.509-514
/
2020
The conventional TTS system consists of several modules, including text preprocessing, parsing analysis, grapheme-to-phoneme conversion, boundary analysis, prosody control, acoustic feature generation by acoustic model, and synthesized speech generation. But TTS system with deep learning is composed of Text2Mel process that generates spectrogram from text, and vocoder that synthesizes speech signals from spectrogram. In this paper, for the optimal Korean TTS system construction we apply Tacotron2 to Tex2Mel process, and as a vocoder we introduce the methods such as WaveNet, WaveRNN, and WaveGlow, and implement them to verify and compare their performance. Experimental results show that WaveNet has the highest MOS and the trained model is hundreds of megabytes in size, but the synthesis time is about 50 times the real time. WaveRNN shows MOS performance similar to that of WaveNet and the model size is several tens of megabytes, but this method also cannot be processed in real time. WaveGlow can handle real-time processing, but the model is several GB in size and MOS is the worst of the three vocoders. From the results of this study, the reference criteria for selecting the appropriate method according to the hardware environment in the field of applying the TTS system are presented in this paper.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.19
no.2
/
pp.161-168
/
2019
Recently, video equipments such as CCTV, which is spreading rapidly, is being used as a means to monitor and cope with abnormal situations in almost governments, companies, and households. However, in most cases, since recognizing the abnormal situation is carried out by the monitoring person, the immediate response is difficult and is used only for post-analysis. In this paper, we present the results of the development of video surveillance system that automatically recognizing the abnormal situations and sending such events to the smartphone immediately using the latest deep learning technology. The proposed system extracts skeletons from the human objects in real time using Openpose library and then recognizes the human behaviors automatically using deep learning technology. To this end, we reconstruct Openpose library, which developed in the Caffe framework, on Darknet framework to improve real-time processing. We also verified the performance improvement through experiments. The system to be introduced in this paper has accurate and fast behavioral recognition performance and scalability, so it is expected that it can be used for video surveillance systems for various applications.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.