• Title/Summary/Keyword: 디지털/아날로그

Search Result 1,224, Processing Time 0.039 seconds

Development of Digital/Analog Hybrid Redundancy System for Audio Mixer (오디오믹서용 디지털-아날로그 하이브리드 이중화 시스템 개발)

  • KIM, Kwan-Woong;CHO, JUPHIL
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.5
    • /
    • pp.63-68
    • /
    • 2016
  • Audio mixer is an electronic device which performs a mixing of multiple audio signals. Digital mixer having various functions and scalability is spreaded thanks to advanced DSP and IT technology. However, digital mixer is more vulnerable to stability comparing to conventional analog mixer in the digital error or software error sense because its control is executed by SW. To solve this problem, in this paper, we propose a multi-channel digital analog hybrid mixer scheme, digital mixer error detection mechanism and malfunctioning switching technique. Also we develop the audio mixer having digital-analog hybrid structure. By simulation, we can sense the error of digital mixer except power loss in a 120ms, change into analog mixer mode automatically and provide continuous broadcasting function without mixer function loss.

Digital Calibration Technique for Cyclic ADC based on Digital-Domain Averaging of A/D Transfer Functions (아날로그-디지털 전달함수 평균화기법 기반의 Cyclic ADC의 디지털 보정 기법)

  • Um, Ji-Yong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.6
    • /
    • pp.30-39
    • /
    • 2017
  • A digital calibration technique based on digital-domain averaging for cyclic ADC is proposed. The proposed calibration compensates for nonlinearity of ADC due to capacitance mismatch of capacitors in 1.5-bit/stage MDAC. A 1.5-bit/stage MDAC with non-matched capacitors has symmetric residue plots with respect to the ideal residue plot. This intrinsic characteristic of residue plot of MDAC is reflected as symmetric A/D transfer functions. A corrected A/D transfer function can be acquired by averaging two transfer functions with non-linearity, which are symmetric with respect to the ideal analog-digital transfer function. In order to implement the aforementioned averaging operation of analog-digital transfer functions, a 12-bit cyclic ADC of this work defines two operational modes of 1.5-bit/stage MDAC. By operating MDAC as the first operational mode, the cyclic ADC acquires 12.5-bits output code with nonlinearity. For the same sampled input analog voltage, the cyclic ADC acquires another 12.5-bits output code with nonlinearity by operating MDAC as the second operational mode. Since analog-digital transfer functions from each of operational mode of 1.5-bits/stage MDAC are symmetric with respect to the ideal analog-digital transfer function, a corrected 12-bits output code can be acquired by averaging two non-ideal 12.5-bits codes. The proposed digital calibration and 12-bit cyclic ADC are implemented by using a $0.18-{\mu}m$ CMOS process in the form of full custom. The measured SNDR(ENOB) and SFDR are 65.3dB (10.6bits) and 71.7dB, respectively. INL and DNL are measured to be -0.30/-0.33LSB and -0.63/+0.56LSB, respectively.

A Study on the Microcontroller Input Port Reduction of IoT Equipments with Mixed Digital and Analog Inputs (디지털과 아날로그 입력이 혼용된 IoT 기기의 마이크로컨트롤러 입력포트 절감에 관한 연구)

  • Lee, Hyun-Chang
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.9
    • /
    • pp.38-43
    • /
    • 2019
  • In this paper, a method of inputting one analog input and two digital switch inputs by using one analog port of microcontroller embedded in IoT device was proposed. In this method, the upper limit and the lower limit of the input voltage range of the analog input port are determined, and the analog input voltage is input to this interval. The digital switches are configured to exceed the boundaries of the upper and lower limits, respectively. To verify the performance of the proposed method, an experimental circuit was constructed and tested using a microcontroller. As a result, all three inputs can be sensed using a single analog port, thus confirming that the three required input ports are reduced to one input port, ie, 33%.

The Study on the digital conversion present situation and consideration regarding an issue of analogue cable broadcast (아날로그 케이블 방송의 디지털 전환 현황과 쟁점에 관한 고찰)

  • Kim, Hee-Kyung;Kim, Dug-Mo
    • Journal of Digital Convergence
    • /
    • v.11 no.6
    • /
    • pp.1-9
    • /
    • 2013
  • The digital signal is terminated on Dec.31, 2012. But most of the analog cable subscribers are faced with the difficult reception of the digital because the government has defined the terrestrial broadcast as digital transition obligation operators. It is estimated that half analog of the total pay-TV subscriber that is approximately 10million households that are directly receiving terrestrial signal must hold the digital TV or DtoA convertor to transit digital. But cable system subscriber should buy Set-top box that are expensive and pay the expensive rates. The cast of analog cable subscribers has been classified as a group that can cause the most damage after digital switch. This study investigate the problem, and cause, solution of the analog cable subscribers that are placed in the blind spots of the digital switch.

A 2.5V 0.25㎛ CMOS Temperature Sensor with 4-bit SA ADC (4-비트 축차근사형 아날로그-디지털 변환기를 내장한 2.5V 0.25㎛ CMOS 온도 센서)

  • Kim, Mungyu;Jang, Young-Chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.2
    • /
    • pp.378-384
    • /
    • 2013
  • In this paper, a CMOS temperature sensor is proposed to measure the internal temperature of a chip. The temperature sensor consists of a proportional-to-absolute-temperature (PTAT) circuit for a temperature sensing part and a 4-bit analog-to-digital converter (ADC) for a digital interface. The PTAT circuit with the compact area is designed by using a vertical PNP architecture in the CMOS process. To reduce sensitivity of temperature variation in the digital interface circuit of the proposed temperature sensor, a 4-bit successive approximation (SA) ADC using the minimum analog circuits is used. It uses a capacitor-based digital-to-analog converter and a time-domain comparator to minimize power consumption. The proposed temperature sensor was fabricated by using a $0.25{\mu}m$ 1-poly 6-metal CMOS process with a 2.5V supply, and its operating temperature range is from 50 to $150^{\circ}C$. The area and power consumption of the fabricated temperature sensor are $130{\times}390{\mu}m^2$ and $868{\mu}W$, respectively.

A Study of Digitalizing Analog Gamma Camera Using Gamma-PF Board (Gamma-PF 보드를 이용한 아날로그 감마카메라의 디지털화 연구)

  • Kim, Hui-Jung;So, Su-Gil;Bong, Jeong-Gyun;Kim, Han-Myeong;Kim, Jang-Hwi;Ju, Gwan-Sik;Lee, Jong-Du
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.4
    • /
    • pp.351-360
    • /
    • 1998
  • Digital gamma camera has many advantages over analog gamma camera. These include convenient quality control, easy calibration and operation, and possible image quantitation which results in improving diagnostic accuracies. The digital data can also be utilized for telemedicine and picture archiving and communication system. However, many hospitals still operate analog cameras and have difficult situation to replace them with digital cameras. We have studied a feasibility of digitalizing an analog gamma camera into a digital camera using Gamma-PF interface board. The physical characteristics that we have measured are spatial resolution, sensitivity, uniformity, and image contrast. The patient's data obtained for both analog and digital camera showed very similar image quality. The results suggest that it may be feasible to upgrade an analog camera into a digital gamma camera in clinical environments.

  • PDF

Digital Controller for DC-DC Converters (DC-DC 컨버터를 위한 디지털 방식의 컨트롤러 회로)

  • Hong, Wanki;Kim, Kitae;Kim, Insuck;Roh, Jeongjin
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.10 s.340
    • /
    • pp.39-46
    • /
    • 2005
  • A DC-DC converter with digital controller is realized. the digital controller has several advantages such as robustness, fast design time, and high flexibility. however, since the DC-DC output voltage is analog, an analog-to-digital conversion scheme is always essential in all digital controllers. A simple and efficient delta-sigma modulator is used as a conversion scheme in out implementation. The measurement results show good voltage regulation

Digital Transmission and Isolation of Multichannel Analog Signals using a Single Optocoupler (옵토커플러의 절연을 이용한 멀티채널 아날로그 신호의 디지털 전송)

  • Nam, Jin Moon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.4 no.4
    • /
    • pp.379-385
    • /
    • 2018
  • The transmission of analog signals through Galvanic isolators often results in signal distortion. Optocoupler gain is temperature dependent and also varies considerably, which would cause deformations of analog signals. Digital isolators have better noise immunity than analog, and digital transmission is a cost-effective noise rejection method for multichannel analog signals, which can solve temperature-induced signal distortion problems. Digital data, converted from multichannel analog signals, can be transmitted through a single optocoupler. We proposed advanced circuits and data frame for robust transmission of multichannel analog signals. Numerical experiments were performed to investigate distortion of multichannel analog signals during transmission.

고성능 저가형 ADuC84x의 구조 및 특성

  • 최명규
    • KIPE Magazine
    • /
    • v.9 no.3
    • /
    • pp.23-27
    • /
    • 2004
  • ADuC84x는 OP-AMP 아날로그-디지털 컨버터(ADC), 디지털-아날로그 컨버터(DAC)로 유명한 ADI(아날로그 디바이스사)의 8비트 임베디드 마이크로콘트롤러인 마이크로컨버터이다. ADI의 마이크로컨버터 ADuC84x는 산업용 정밀제어 및 계측용 애플리케이션의 고성능 신호처리를 위해 설계된 프로그래머블 고속 임베디드 마이크로콘트롤러이다.(중략)

A 10-bit CMOS Time-Interpolation Digital-to-Analog Converter (10-비트 CMOS 시간-인터폴레이션 디지털-아날로그 변환기)

  • Kim, Myngyu;Jang, Young-Chan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.225-228
    • /
    • 2012
  • In this paper, a 10-bit digital-to-analog converter (DAC) with small area is proposed. The 10-bit DAC consists of a 8-bit decoder, a 2-bit time-interpolator, and a buffer amplifier. The proposed time-interpolation is achieved by controlling the charging time through a low-pass filter composed of a resistor and a capacitor. To implement the accurate time-interpolator, a control pulse generator using a replica circuit is proposed to minimize the effect of the process variation. The proposed 10-bit Time-Interpolation DAC occupies 61 % of the conventional 10-bit resistor-string DAC. The proposed DAC is designed using a $0.35{\mu}m$ CMOS process with a 3.3 V supply. The simulated DNL and INL are +0.15/-0.21 LSB and +0.15/-0.16 LSB, respectively.

  • PDF