• Title/Summary/Keyword: 등방성 난류

Search Result 21, Processing Time 0.028 seconds

Anisotropy of Turbulence in Vegetated Open-Channel Flows (식생된 개수로 흐름에서의 난류의 비등방성)

  • Kang, Hyeong-Sik;Choi, Sung-Uk
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.10 s.159
    • /
    • pp.871-883
    • /
    • 2005
  • This paper investigates the impacts of turbulent anisotropy on the mean flow and turbulence structures in vegetated open-channel flows. The Reynolds stress model, which is an anisotropic turbulence model, is used for the turbulence closure. Plain open-channel flows and vegetated flows with emergent and submerged plants are simulated. Computed profiles of the mean velocity and turbulence structures are compared with measured data available in the literature. Comparisons are also made with the predictions by the k-$\epsilon$ model and by the algebraic stress model. For plain open-channel flows and open-channel flows with emergent vegetation, the mean velocity and Reynolds stress profiles by isotropic and anisotropic turbulence models were hardly distinguished and they agreed well with measured data. This means that the mean flow and Reynolds stress is hardly affected by anisotropy of turbulence. However, anisotropy of turbulence due to the damping effect near the bottom and free surface is successfully simulated only by the Reynolds stress model. In open-channel flows with submerged vegetation, anisotropy of turbulence is strengthenednear the vegetation height. The Reynolds stress model predicts the mean velocity and turbulence intensity better than the algebraic stress model or the k-$\epsilon$ model. However, above the vegetation height, the k-$\epsilon$ model overestimates the mean velocity and underestimates turbulence intensity Sediment transport capacity of vegetated open-channel flows is also investigated by using the computed profiles. It is shown that the isotropic turbulence model underestimates seriously suspended load.

봉다발을 지나는 저 Prandtl 수 유체 유동에서의 난류 혼합율 예측

  • Kim, Sin;Cho, Kyung-Ho;Lee, Yun-Jun
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05a
    • /
    • pp.520-525
    • /
    • 1998
  • 난류혼합율에 대한 예측은 원자로의 노심 열수력 설계에 있어 매우 중요한 일이다. 봉다발 구조에서 난류혼합의 주요 원인으로 지목되고 있는 유동액동(flow pulsation) 현상에 대한 척도평가(scale analysis)틀 통해 봉다발 유동장을 흐르는 저 Prandtl 수 유채에 대판 난류혼합율 평가식을 유도하였다. 난류혼합에 기여하는 인자가 분자운동, 등방성 난류운동(유동맥동 효과률 배제한 난류운동), 그리고 유동맥동의 세 부분으로 구성되어 있다고 가정하고, 각각에 대한 길이 및 속도척도를 평가하여 난류혼합율을 유도하였다. 평가식에는 P/D, Re수 P${\gamma}$ 수 등의 인자가 고려되어 있어 다양한 기하학적, 수력학적 조건과 유체의 물리적 특성이 반영되어 있다. 유도원 난류혼합율 평가식을 실험 상관식과 비교하였으며, 비교 결과 만족스러운 것으로 나타났다.

  • PDF

BEHAVIOR OF MICROBUBBLES IN ISOTROPIC TURBULENCE (등방성 난류에서의 마이크로버블 거동)

  • Shim, G.H.;Lee, S.G.;Lee, C.
    • Journal of computational fluids engineering
    • /
    • v.21 no.4
    • /
    • pp.46-53
    • /
    • 2016
  • Direct numerical simulation is conducted to observe the behavior of microbubbles in isotropic turbulence. Navier-Stokes equation and the motion of equation for microbubbles are solved with periodic boundary condition in a cube domain. Vorticity contour, enstrophy ratio, relative reduction of bubble rise velocity, and the closest distance of particles are investigated for various Stokes numbers and gravity factors to understand clustering of microbubbles. Also, clustering due to the effect of the lift force is investigated.

Intermittency of helicity in isotropic turbulence (등방성 난류의 헬리스티의 간헐성)

  • Choi, Yeon-Taek;Lee, Chang-Hoon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.441-444
    • /
    • 2006
  • Helicity in isotropic turbulence was well known to have intermittent fashion in their statistics. But its exact explanation about the onset of intermittency of helicity in turbulence did not give clearly yet. Most probable causes comes from the vortical motion of the fluids. Distribution of the angle between fluid velocity and vorticity have alignment tendency. This may be a clue to investigate intermittency of helicity. In this study, we aim to review and establish approaches to reveal the mechanism and the origin of intermittency of helicity in the isotropic turbulence. To do those work, we look for some quantities like helicity, enstrophy, acceleration and its flatness. And also correlations among them are sought.

  • PDF

Behavior of small particles in isotropic turbulence in the presence of gravity (중력이 존재하는 등방성 난류에서 작은 입자의 유동)

  • Cho, Seong-Gee;Yeo, Kyong-Min;Lee, Chang-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2396-2400
    • /
    • 2008
  • The motion of small heavy particles in homogeneous isotropic turbulence in the present of gravity is investigated using Direct Numerical Simulations (DNS) at moderate Reynolds number. The Lagrangian velocity and acceleration statistics of particles and of flow for a wide range of Stokes number, defined as the ratio of the particle response time to Kolmogorov time scale of turbulence, were obtained for the direction of the gravity and normal direction, respectively. It is found that particles lose their correction faster than the case without gravity. Then, a significant increase in the average settling velocity was observed for a certain range of Stokes number. Our focus is placed on gravitational effect on very small particles. Our simulations show that as the Stokes number reduces to zero, their mean settling velocity approaches the terminal velocity in still fluid.

  • PDF

Modification of Particle Dispersion in Isotropic Turbulence by Free Rotation of Particle (등방성 난류에서 입자의 회전에 의한 분산 특성의 변화)

  • Park, Yong-Nam;Lee, Chang-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.7
    • /
    • pp.665-670
    • /
    • 2010
  • The effect of a particle's spin is investigated numerically by taking into account the effect of lift forces originating due to difference between the rotations of a particle and of a fluid, such as the Saffman and Magnus lift forces. These lift forces have been ignored in many previous studies on particle-laden turbulence. The trajectory of the particles can be changed by the lift forces, resulting in a significant modification of the stochastic characteristics of heavy particles. Probability density functions and autocorrelations are evaluated from the velocity of solid particle, acceleration of solid particles, and acceleration of fluid at the position of solid particle. Changes in velocity statistics are negligible but statistics related with acceleration are affected by the rotation of particle. When a laden particle encounters coherent structures during its motion, the particle's rotation might significantly affects the motion due to intermittently large fluid acceleration near the coherent structures.

Numerical Investigations of Open-Channel Flows with Alternate Vegetation using $k-{\varepsilon}$ model ($k-{\varepsilon}$ 난류모형을 이용한 대응 식생수로 흐름 수치모의)

  • Kang, Hyeong-Sik;Kim, Kyu-Ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.545-549
    • /
    • 2009
  • 본 연구에서는 주흐름방향으로 식생 영역이 교차적으로 존재하는 개수로 흐름에 대한 3차원 수치 모의를 수행하였다. 지배방정식의 난류 폐합을 위해 $k-{\varepsilon}$ 난류모형을 이용하였다. 먼저, 하상의 일부만 식재된 부분 식생 수로를 수치모의 하고 기존의 실험 결과와 비교하였다. 그 결과 본 모형이 평균유속 분포를 매우 잘 예측하는 것으로 나타났으나, 레이놀즈응력 분포는 실험 결과에 비해 비식생영역에서는 다소 과소 산정하고 식생영역에서는 과대 산정하는 것으로 나타났다. 이는 본 모형이 등방성 모형이기 때문에 식생 경계부에서 발생되는 난류의 비등방성 효과를 정확히 예측 할 수 없기 때문인 것으로 판단된다. 또한 주흐름방향으로 식생 영역이 교차적으로 존재하는 대응 식생 수로를 수치모의하고, 계산 결과를 기존의 실험 결과와 비교하였다. 그 결과 본 모형이 대응 식생 수로에서의 유속 분포를 매우 잘 예측하는 것으로 나타났다. 또한 식생 밀도가 증가함에 따라 식생이 흐름 방향을 변화시켜 점차 만곡수로와 유사한 형태의 흐름이 형성되는 것으로 나타났다.

  • PDF

Study of the Secondary Flow Effect on the Turbulent Flow Characteristics in Fuel Rod Bundles (핵연료봉 주위의 난류 유동장 특성에 미치는 이차 유동의 영향에 대한 연구)

  • Lee, Kye-Bock;Jang, Ho-Cheol;Lee, Sang-Keun
    • Nuclear Engineering and Technology
    • /
    • v.26 no.3
    • /
    • pp.345-354
    • /
    • 1994
  • Numerical Predictions including secondary flows have been Performed for fully developed turbulent single-phase rod bundle flows. The k-$\varepsilon$ turbulence model(two equation model) for the isotropic eddy viscosity, together with an algebraic stress model for generating secondary velocities, enabled the prediction of mean axial velocities, secondary velocities, and turbulent kinetic energy and turbulent stresses. Comparisons with experiment hate shown that the influence of secondary motion on mean flow and turbulence is dearly evident. The convective transport effects of secondary flow on the velocity field have been identified.

  • PDF

Linear estimation of conditional eddies in turbulence (난류구조의 조건와류에 대한 선형적 평가)

  • 성형진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.5
    • /
    • pp.1175-1188
    • /
    • 1988
  • Linear estimation in isotropic turbulence is examined to approximate conditional averages in the form of fluctuating velocity fields conditioned on local velocity. The conditional flow fields and their associated vorticity field are computer using experimental data [Van Atta and Chen] and energy spectrum model [Driscoll and Kennedy]. It appears that ring vorticies could be the dominant structure. Due to the extremely large vorticity in the viscous region of a conditional ring vortex, the energy spectrum model can be used appropriately by changing the Reynolds number. The hairpin vortex could be detected by combining vorticies in isotropic field with an anisotropic orientation imbedded in uniform mean shear flow and this is consistent with other studies [Kim and Moin].