• Title/Summary/Keyword: 등가비틀림강성

Search Result 9, Processing Time 0.02 seconds

Control of the Eccentric Building Using a TMD with Torsional Rigidity (비틀림 강성을 가지는 동조질량감쇠기를 이용한 편심건물의 제어)

  • Park, Yong-Koo;Kim, Hyun-Su;Lee, Dong-Guen
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.2
    • /
    • pp.65-72
    • /
    • 2012
  • In this stury, control performance of tuned mass damper (TMD) with torsional rigidity for an eccentric structure showing torsional responses is investigated. To this end, an eccentric structure subjected to earthquake excitation is used to evaluate the control performance of torsional TMD by varying installed location and torsional rigidity of TMD, To reduce computational time required for repetitive time history analysis of an example structure having non-proportional damping system due to TMD, an equivalent analytical model is used in this study. Torsional properties of TMD usually neglected in typical TMD are verified to be effective in reduction of torsional responses of the eccentric structure. In the case of eccentric structures, it has been seen that the center of a plane of a structure may not be optimal location of TMD.

Equivalent Model Dynamic Analysis of Main Wing Assembly for Optionally Piloted Personal Air Vehicle (자율비행 개인항공기용 주익 조립체 등가모델 동특성 해석)

  • Kim, Hyun-gi;Kim, Sung Jun
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.1
    • /
    • pp.72-79
    • /
    • 2021
  • In this study, as part of the development of an autonomous flying personal aircraft, an equivalent model of the main wing assembly of an Optionally Piloted Personal Air Vehicle (OPPAV) was developed. Reliability of the developed equivalent model was verified by eigenvalue analysis. The main wing assembly consisted of a main wing, an inboard pod, and an outboard pod. First, for developing an equivalent model of each component, components to produce the equivalent model were divided into several sections. Nodes were then created on the axis of the equivalent model at both ends of each section. In addition, static analysis with unit force and unit moment was performed to calculate the deformation or the amount of rotation at the node to be used in the equivalent model. Equivalent axial, bending, and torsional stiffness of each section were calculated by applying the beam theory. Once the equivalent stiffness of each section was calculated, information of a mass and moment of inertia for each section was entered by creating a lumped mass in the center of each section. An equivalent model was developed using beam element. Finally, the reliability of the developed equivalent model was verified by comparison with results of mode analysis of the fine model.

Long-Term Torsional Analysis of Prestressed Concrete Members with the Effects of Creep and Shrinkage (크리이프 및 건조수축의 영향을 고려한 프리스트레스트콘크리트 부재의 장기 비틀림 해석)

  • Oh, Byung Hwan;Park, Chang Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.741-749
    • /
    • 1994
  • The purpose of the present study is to propose a realistic method to analyze the prestressed concrete members subjected to long term torsional loading. The present study devises a method to realistically take into account the tensile stiffness of concrete after cracking. The effects of biaxial compressive and tensile loadings on the compressive and tensile strengths of concrete are also taken into account in the present model. The salient feature of the present study lies in the fact that the cracking, creep, and shrinkage behavior of concrete and the relaxation of steel have been realistically considered. The comparison of the present theory with experimental data indicates that the proposed model dipicts reasonably well the actual behavior of prestressed concrete members under long-term torsional loadings.

  • PDF

Development of Efficient Seismic Analysis Model using 3D Rigid-body for Wall-Frame Structures with an Eccentric Core (삼차원 T형강체를 이용한 편심코어를 가진 전단벽-골조 구조물의 효율적인 지진해석모델 개발)

  • Park, Yong-Koo;Lee, Dong-Guen;Kim, Hyun-Su
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.1
    • /
    • pp.19-28
    • /
    • 2013
  • In a shear wall-frame structural system, the structural response is determined by the interaction between the shear wall in bending mode and the frame in shear mode. In order to effectively consider these characteristics of a shear wall-frame structure, the simplified numerical model using the T-shape rigid body was suggested in the previous study. Based on the previously proposed model, an efficient numerical model for a wall-frame structure with an eccentric core has been proposed in this study. To this end, the previously proposed 2D model is extended to the 3D model and it is enhanced by considering torsion effects. As a result, the enhanced model can be applied to the analysis of a wall-frame structure with an eccentric core as well as a centric core.

A Study on the Bandwidth of Gear Reduction Servo System according to Backlash and Motor Supplied Voltage (백래시 및 모터 입력전압에 따른 기어감속 서보 시스템 대역폭에 관한 연구)

  • Baek, Joo-Hyun;Hong, Sung-Min;Yang, Tae-Suk;Kim, Soo-Hyun;Kwak, Yoon-Keun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.6
    • /
    • pp.119-127
    • /
    • 2002
  • The paper presents the effect of the backlash magnitude and the supplied voltage of motor on the gear reduction servo system. The bandwidth of the system depends heavily on the supplied voltage of motor as well as the backlash magnitude. Specially, the bandwidth of the system increases as the supplied voltage of motor increases. 1t is shown that the system has the bandwidth of zero backlash in case of motor supplied voltage is infinite. It is also found that the magnitude of the supplied voltage of motor is very important in case of the analysis of the system bandwidth.

A Study on the Vibration Characteristics of the Eccentrically Stiffened Plate Attached an Orthogonal Stiffener at Arbitrary Angle (직교 보강재가 임의의 각도로 부착된 편면 보강평판의 진동 특성에 관한 연구)

  • 정병환;김찬묵
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.172-178
    • /
    • 1995
  • 보강평판은 평판에 각종 보강재를 용접등의 방법에 의해서 종방향, 횡방향, 경사 또는 임의의 방향으로 부착시켜 굽힘 및 비틀림 강성을 향상시킨 구조요소이다. 이러한 구조요소는 구조적 필요성이나 경량화 설계에 따라 선박의 deck, 철도 차량, 항공기 및 자동차 등의 각종 구조물에서 부하능력 및 경제성을 증대시키기 위하여 널리 사용되고 있고, 또한 자동차용 오일팬, 가전기기의 케이싱과 모터의 케이싱등에도 사용되고 있다. 최근 현장에서는 이러한 구조물의 진동 감소 및 방진 문제가 큰 관심사가 되고 있다. 본 논문은 정사각형 알루미늄 평판에 +자 형태의 Box Beam 보강재를 편면 보강하고 4변 자유단의 경계 조건을 설정하였다. 보강재는 유한요소 정식화 과정을 통하여 평판 요소에 등가시키고, 2차원의 평판 구조로 보강 평판을 모델링하고 구조해석 프로그램인 ANSYS를 이용하여 해석하였다. 실험은 Impact Test에 의해서 주파수 응답 함수(FRF)를 각 시편에 대해서 구하고 이를 해석의 고유진동수와 비교하였다. 그리고 보강재가 임의의 각도로 평판에 부착되었을 때 고유진동수의 변화와 진동 모드(mode shape)를 분석하였다.

  • PDF

Study on Determination Principal Direction for Composite Rotor Blades (복합재료회전익의 주축계 결정화에 관한 연구)

  • 유용석;이종범;정경렬
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1995.04a
    • /
    • pp.354-359
    • /
    • 1995
  • 회전익의 소재로 복합재료를 선택하게 됨에 따라 헬리콥터의 유지, 보수 및 성능에서 유리하게 되었지만 허브 형태의 간소화로 인하여 해석상의 어려움은 확대 되었다고 할 수 있을 것이다. 따라서 회전익의 단면특성은 더욱 중요한 의미를 갖게 되었다. 회전익의 단면특성을 결정하기 위해서 우선적으로 각 방향운동의 연성항을 소거하는 것이 계산상 유리하고 따라서 관성주축방향을 결정하는 것이 중요하다. 그러나 회전익의 익형이 대칭형이 아니고 복합한 재료로 구성되어 있을 뿐 아니라 효율의 극대화를 위하여 축방향을 따라 비틀림을 부여하고 있기 때문에 관성주축의 방향을 결정하는데 많은 어려움이 존재한다. 따라서 본 연구에서는 실제 회전익을 그 연구 대상으로 회전익 단면의 등가강성행렬을 추출하고 외팔보의 공학이론과 회전행렬을 이용하는 방법으로 관성주축방향을 결정하는 방법을 제시하였다. 해석방법의 타당성을 확보하기 위하여 엄밀해를 알고 있는 간단해 단면을 갖는 외팔보를 이용하여 검증하였다. 이러한 방법은 관성주축방향을 결정하는 새로운 프로그램의 개발이라는 부담을 최소화 하였을 뿐 아니라, 해석방법 자체가 가지는 간편성으로 인하여 많은 시간과 노력을 줄일수 있을 것으로 기대된다.

  • PDF

Analysis of the Rrigidity and the Vibration of Flat Corrugated Plates (주름판의 강성해석 및 진동해석)

  • Han, B.K.;Chung, K.;Yoo, S.Y.
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.11-18
    • /
    • 1991
  • Stiffened plate structure, which is generally used in the various structural design to develope the load carrying capacity, is classified in two groups; one is the plate stiffened with stiffeners, the other is corrugated plate. In the studies on those structures, the studies on the stiffened plates with stiffeners have been much studied with both quantities and qualities according to requirements of the minimum-weight structural design and the development in many industrial fields, especially automobile, ship and aerospace fields, but the studies on the corrugated plates are undeveloped in comparison with the stiffened plates, and also the analytical stiffness on the corrugated plates remains as the imperfect. In the present studies, the analytical method on the stiffness of corrugated plates made by folding is proposed, and the stiffness equation of corrugated plates with some angle is derived and generalized. The purpose of the present study is to contribute to the design of corrugated plates and to determine the optimum aspect ratio for parameters that decide the aspect of corrugated plates.

A Parametric Study on Intermediate Diaphragms of Steel-Box-Girder Bridges (강박스 거더교의 내부 다이아프램에 관한 매개변수 연구)

  • Park, Nam Hoi;Lim, Da Soo;Cho, Sun Kyu;Kang, Young Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.3
    • /
    • pp.231-239
    • /
    • 2003
  • Many box girder bridges have been constructed during the past several decades due to their large bending and torsional rigidities as well as aesthetic considerations. However, box girders have shortcoming in that the cross section distorts under an eccentric loading and warps out of the section plane. Therefore, in order to reduce distortional stresses such as distortional warping and transverse bending normal stresses, diaphragms were generally installed in the box girders. Shapes of the diaphragms in steel-box-girder bridges constructed up to date were solid-plate, frame, and truss types. The objectives of this study using parametric study were to evaluate the appropriate stiffness ratio of intermediate diaphragms and then to propose the effective spacing and numbers of intermediate diaphragms based on the evaluated stiffness ratio. Target bridges for this study were straight continuous span bridges with a single-cell steel box section. The parameters for the parametric study were the shape of box section, the span numbers, the equivalent span length, the stiffness of intermediate diaphragms, and the spacing of intermediate diaphragms. From the results of the parametric study, the effective spacing and numbers as well as the stiffness ratio of the intermediate diaphragms will be presented.