• Title/Summary/Keyword: 두께 방향 응력

Search Result 324, Processing Time 0.028 seconds

Development of the computer program calculating the stress induced by various loads for buried natural gas pipeline ( I ) (매설 천연가스 배관의 제반하중에 의한 응력 계산용 프로그램 개발 (I))

  • Bang I.W.;Kim H.S.;Kim W.S.;Yang Y.C.;Oh K.W.
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.2
    • /
    • pp.18-25
    • /
    • 1998
  • According to the requirements of ANSI B3l.8, the pipe thickness is determined with hoop stress resulted from internal pressure. And the other loads induced by soil, vehicle, thermal expansion, ground subsidence, etc shall be evaluated rationally. There are two ways of calculating stress of buried gas pipeline. The first is FEM. FEM can calculate the stress regardless of the complexity of pipeline shape and boundary conditions. But it needs high cost and long time. The second is the way to use equation. The reliable equations to calculate the stress of buried gas pipeline was developed and have been used in designing pipeline and evaluating pipeline safety, But these equation are very difficult to understand and use for non-specialist. For easy calculation of non-specialist, the new computer program to calculate stress of buried natural gas pipeline have been developed. The stress is calculated by the equations and extrapolation of the graph resulted from FEM. The full paper is consist of series I and II. In this paper, series I, the calculating equation of the program is explained in detail.

  • PDF

Strength Evaluation of Steel Box Beam-to-Column Connections with Axial Load (축방향 하중을 받는 강재 상자단면 보-기둥 접합부의 강도평가)

  • Hwang, Won Sup;Park, Moon Su;Kim, Young Pil
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.1
    • /
    • pp.117-127
    • /
    • 2007
  • In this study, we evaluate the strength of steel box beam-to-column connections subjected to axial loads in steel frame piers. The T-connection strength was reduced due to the column axial force in the two-story pier structure. To examine this phenomenon, non-linear FEM analysis was carried out and the analytical procedure was verified by comparing it with experimental results. To clarify the effect of the axial force and major design parameters in connection with strength, influence of panel zone width-thickness ratio, sectional area, and axial force was investigated using FEM analysis. Also, the theoretical strength equations were suggested by stress distribution of panel zone. The strength of the T-connection was compared with one of the one-story pier structure connections. As a result, the strength evaluation equations are proposed in consideration of the panel zone width-thickness ratio and sectional area ratio for the T-connections.

The effects of End Platens on Effective Stresses in Resonant Column (RC) Specimens during Consolidation (공진주 시험기 단부가 압밀중인 시료의 유효응력에 미치는 영향)

  • Bae, Yoon-Shin
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.1
    • /
    • pp.29-42
    • /
    • 2008
  • The objective of this study is to investigate the effects of rigid end platens on effective stresses in soil mass during consolidation. The friction between the teeth of top cap/base pedestal and the specimen during consolidation decreases the radial and tangential effective stresses in RC specimens. However, it is unpractical to measure the effective stresses in the soil specimen. Two approaches were used to evaluate the state of stress in RC specimens during consolidation. First, careful measurements were made of small strain shear modulus, $G_{max}$ in specimens with carefully controlled void ratios and stress histories, to infer the state of stress. And second, a finite element analysis was performed to analytically evaluate the effect of various soil parameters on the state of stress in RC specimens during consolidation. By combining these experimental and analytical results, an example was performed to predict the average state of stress in RC specimens during consolidation.

Structural analysis of a thick composite rotor hub system by using equivalent properties (등가 물성을 이용한 두꺼운 복합재 로터 허브 시스템의 구조 해석)

  • ;Yanti Rachmadini
    • Composites Research
    • /
    • v.16 no.5
    • /
    • pp.7-14
    • /
    • 2003
  • Modeling of thick composite structures for finite element analysis is relatively complicated. 2-D plane elements may cause inaccurate result since the plane stress condition cannot be applicable in these structures. Therefore a 3-D modeling should be used. However, the difficulty to model all the layers with different material properties and ply orientation arise in this case. In this paper, an equivalent modeling is proposed and numerically tested for analysis of thick composite structures. By grouping layers with same material and ply orientation, number of elements through the thickness is remarkably reduced and still the result is close enough to the one from a detail finite element model. MSC/NASTRAN and PATRAN are used for the analysis. The proposed modeling technique has been applied for analysis of composite rotor hub system designed by Korea Aerospace Research Institute(KARI). Using the proposed equivalent modeling technique, we could conduct stress analysis for the hub system and check the safety factor of each part.

Modeling of Multi-Stage Hydraulic Fracture Propagation (다단계 수압파쇄균열 전파 모델링 연구)

  • Jang, Youngho;Sung, Wonmo
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.5
    • /
    • pp.13-19
    • /
    • 2015
  • This paper presents a hydraulic fracture propagation model to describe propagation more realistically. In propagating the hydraulic fractures, we have used two criteria: maximum tangential stress to determine the fracture initiation angle and whether a hydraulic fracture intersects a natural fracture. The model was validated for the parameters relevant to fracture propagation, such as initiation angle and crossing ability through natural fracture. In order to check whether a hydraulic fracture crosses a natural fracture, the model results on crossing state excellently matched with the experimental data. In the sensitivity analysis for direction of maximum horizontal stress, frictional coefficient of fracture interface, and natural fracture orientation, the results show that hydraulic fracture intersects natural fracture, and then, propagated suitably with theoretical results according to fracture interaction criterion. In comparison of this model against vertical fracture approach, it was ascertained that there are discrepancies in fracture connectivity and stimulated reservoir volume.

Analytical Study on Concrete Cover Thickness of Anisotropic FRP Bar (이방성 섬유강화폴리머 보강근의 콘크리트 피복두께에 대한 해석적 연구)

  • Yi, Seong-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.1
    • /
    • pp.58-66
    • /
    • 2022
  • In this study, to examine the effect of the transverse thermal expansion behavior of FRP reinforcing bars and concrete on the concrete cover thickness, based on 20℃, when the temperature changes from -70℃ to 80℃, the behavior of concrete was studied theoretically and numerically. Theoretical elastic analysis and nonlinear finite element analysis were performed on FRP reinforced concrete with different diameters and cover thicknesses of FRP reinforcement. As a result, at a negative temperature difference, concrete was compressed, and the theoretical strain result and the finite element result were similar, but at a positive temperature difference, tensile stress and further cracks occurred in the concrete, which was 1.2 to 1.4 times larger than the theoretical result. The ratio of the diameter of the FRP reinforcing bar to the thickness of the concrete cover (c/db) is closely related to the occurrence of cracks. Since the transverse thermal expansion coefficient of FRP reinforcing bars is three times greater than that of concrete, it is necessary to consider this in design.

On the Optimized Design of a Composite Hydrogen Fuel Tank using Taguchi Method (다구찌법을 이용한 복합소재 수소연료탱크의 최적설계에 관한 연구)

  • Kim, Chung-Kyun;Kim, Do-Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.6
    • /
    • pp.57-62
    • /
    • 2011
  • In this study, the optimized design for 130 liter storage fuel tank with 70MPa filling pressure has been investigated using a FEM technique and Taguchi design method. The strength safety of a composite fuel tank in which is fabricated by an aluminum liner of 6061-T6 material and carbon fiber wound composite layers of T800-24K has been analyzed based on the criterion of design safety of US DOT-CFFC and Korean Standard. The FEM computed results on the stress safety of 70MPa hydrogen gas tank were compared with a criterion of a stress ratio, 2.4 of US DOT-CFFC and Korean Standard, and indicated the safety. Thus, the optimized design elements based on the Taguchi's method were recommended as an aluminum liner thickness of 6.4mm, a carbon fiber laminate thickness in hoop direction of 31mm and a carbon fiber laminate thickness in helical direction of 10.2mm, which is represented by a design model of No. 5.

Photoelastic Stress Analysis for a Rhombus Plate under Compressive Load Using Image Processing Technique (압축하중을 받는 마름모 판에 대한 영상처리기법을 이용한 광탄성 응력 해석)

  • Liu, Guan Yong;Kim, Myung Soo;Baek, Tae Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.2
    • /
    • pp.148-154
    • /
    • 2014
  • Photoelasticity is a useful technique for obtaining the differences and directions of principal stresses in a model. In conventional photoelasticity, the photoelastic parameters are measured manually point by point. Identifying and measuring photoelastic data is time-consuming and requires skill. The fringe phase shifting method was recently developed and has been found to be convenient for measuring and analyzing fringe data in photo-mechanics. This paper presents an experimental study on the stress distribution along a horizontal line that passes the central point of a rhombus plate made of Photoflex (i.e., type of urethane rubber). The isoclinic fringe and/or principal stress direction is constant on this horizontal line, so a four-bucket phase shifting method can be applied. The method requires four photoelastic fringes that are obtained from a circular polariscope by rotating the analyzer at $0^{\circ}C$, $45^{\circ}C$, $90^{\circ}C$ and $135^{\circ}C$. Experimental measurements using the method were quantitatively compared with the results from FEM analysis; the results from the two methods showed comparable agreement.

Characteristics of Shear Wave Velocity as Stress-induced and Inherent Anisotropies (응력유도 및 고유 이방성에 따른 전단파 속도 특성)

  • Lee, Chang-Ho;Yoon, Hyung-Koo;Truong, Hung-Quang;Cho, Tae-Hyeon;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.11
    • /
    • pp.47-54
    • /
    • 2006
  • Shear wave velocity of uncemented soil can be expressed as the function of effective stresses when capillary phenomena are negligible. However, the terms of effective stresses are divided into the direction of wave propagation and polarization because stress states are generally anisotropy. The shear wave velocities are affected by ${\alpha}$ parameters and ${\beta}$ exponents that are experimentally determined. The ${\beta}$ exponents are controlled by contact effects of particulate materials (sizes, shapes, and structures of particles) and the ${\alpha}$ parameters are changed by contact behaviors among particles, material properties of particles, and type of packing (i.e., void ratio and coordination number). In this study, consolidation tests are performed by using clay, mica and sand specimens. Shear wave velocities are measured during consolidation tests to investigate the stress-induced and inherent anisotropies by using bender elements. Results show the shear wave velocity depends on the stress-induced anisotropy for round particles. Furthermore, the shear wave velocity is dependent on particle alignment under the constant evvective stress. This study suggests that the shear wave velocity and the shear modulus should be carefully estimated and used for the design and construction of geotechnical structures.

Geometry and Kinematics of the Yeongdeok Fault in the Cretaceous Gyeongsang Basin, SE Korea (한반도 동남부 백악기 경상분지 내 영덕단층의 기하와 운동학적 특성)

  • Seo, Kyunghan;Ha, Sangmin;Lee, Seongjun;Kang, Hee-Cheol;Son, Moon
    • The Journal of the Petrological Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.171-193
    • /
    • 2019
  • This study aims to identify the geometry and internal structures of the Yeongdeok Fault, a branch fault of the Yangsan Fault, by detailed mapping and to characterize its kinematics by analyzing the attitudes of sedimentary rocks adjacent to the fault, slip data on the fault surfaces, and anisotropy of magnetic susceptibility (AMS) of the fault gouges. The Yeongdeok Fault, which shows a total extension of 40 km on the digital elevation map, cuts the Triassic Yeongdeok Granite and the Cretaceous sedimentary and volcanic rocks with about 8.1 km of dextral strike-slip offset. The NNW- or N-S-striking Yeongdeok Fault runs as a single fault north of Hwacheon-ri, Yeongdeok-eup, but south of Hwacheon-ri it branches into two faults. The western one of these two faults shows a zigzag-shaped extension consisting of a series of NNE- to NE- and NNW-striking segments, while the eastern one is extended south-southeastward and then merged with the Yangsan Fault in Gangu-myeon, Yeongdeok-gun. The Yeongdeok Fault dips eastward with an angle of > $65^{\circ}$ at most outcrops and shows its fault cores and damage zones of 2~15 m and of up to 180 m wide, respectively. The fault cores derived from several different wall rocks, such as granites and sedimentary and volcanic rocks, show different deformation patterns. The fault cores derived from granites consist mainly of fault breccias with gouge zones less than 10 cm thick, in which shear deformation is concentrated. While the fault cores derived from sedimentary rocks consist of gouges and breccia zones, which anastomose and link up each other with greater widths than those derived from granites. The attitudes of sedimentary rocks adjacent to the fault become tilted at a high angle similar to that of the fault. The fault slip data and AMS of the fault gouges indicate two main events of the Yeongdeok Fault, (1) sinistral strike-slip under NW-SE compression and then (2) dextral strike-slip under NE-SW compression, and shows the overwhelming deformation feature recorded by the later dextral strike-slip. Comparing the deformation history and features of the Yeongdeok Fault in the study area with those of the Yangsan Fault of previous studies, it is interpreted that the two faults experienced the same sinistral and dextral strike-slip movements under the late Cretaceous NW-SE compression and the Paleogene NE-SW compression, respectively, despite the slight difference in strike of the two faults.