• Title/Summary/Keyword: 동적 운동

Search Result 757, Processing Time 0.023 seconds

The Effects of Different Types of Treatment on EPOC and Anti-Oxidant Systems after Horseback Riding Exercise (승마기구운동 후 서로 다른 회복처치가 초과산소섭취량 및 항산화력에 미치는 영향)

  • Kim, Cheol-Woo;Baek, Yeong-Ho;Kwak, Yi-Sub
    • Journal of Life Science
    • /
    • v.21 no.11
    • /
    • pp.1612-1618
    • /
    • 2011
  • The present study was undertaken to analyze the effects of different types of treatment on excess post exercise oxygen consumption (EPOC), flexibility, free radical and antioxidants in women using a horseback riding therapeutic device. Subjects were trained in regular horseback riding exercises for 12 weeks (3 times/wk). The effects of this exercise were examined by means of a single session of horseback riding that lasted for 30 min. 21 women were recruited from a public health center and divided into 3 groups (passive recovery group, passive+massage recovery group, and dynamic recovery group). 3 types of recovery patterns were determined after a single trial of horseback riding exercise. Their flexibility were determined pre-and post-training by Paired T test, and ANOVA were used to analyze the data. The results were as follows: Among the 3 groups, the dynamic recovery group showed the highest levels of EPOC compared to the other groups, and also showed higher levels of anti-oxidants, as did the passive+massage recovery group compared to the passive recovery group. Moreover, horseback riding exercise greatly increased flexibility in the women. In conclusion, regular horseback riding training is recommended to enhance the flexibility of women and dynamic recovery is recommended to enhance EPOC and anti-oxidants after a single bout of exercise. Further study is needed in this area.

Parametric Study on Dynamic Stability Behaviors of Beck's Column considering Shear Deformation and Damping Effects (전단변형 및 감쇠효과를 고려한 비보존력을 받는 외팔기둥의 동적 안정성거동에 대한 매개변수연구)

  • Lee, Jun-Seok;Kim, Nam-Il;Kim, Moon-Young
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.6 s.46
    • /
    • pp.1-12
    • /
    • 2005
  • For a shear-deformable beam-column element subjected io non-conservative forces, equations of motion and a finite element formulation are presented applying extended Hamilton's principle. The influence of non-conservative force's direction parameter, internal and external damping forces, and shear deformation and rotary inertia effects on divergence and flutter loads of Beck's columns are intensively investigated based on element stiffness, damping and mass matrixes derived for the non-conservative system.

LNG 슬로싱 현상을 고려한 FPSO와 LNG운반선의 동적거동에 관한 연구

  • Lee, Seung-Jae;Go, Jeong-Min;Gong, Ji-Hun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2011.11a
    • /
    • pp.5-7
    • /
    • 2011
  • LNG 운반선이 대형화 됨에 따라 슬로싱의 동적거동에 대한 영향에 대한 관심이 증가하고 있다. 본 연구에서는 시간영역에서 슬로싱 현상과 FPSO와 LNG운반선의 거동을 동적으로 연성하여, LNG 슬로싱이 두 부유체의 global performance에 미치는 영향을 시간영역에서 시뮬레이션하였다.

  • PDF

Dynamic Interaction of Single and Group Piles in Sloping Ground (경사지반에 설치된 단일말뚝과 무리말뚝의 동적 상호작용)

  • Tran, Nghiem Xuan;Yoo, Byeong-Soo;Kim, Sung-Ryul
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.1
    • /
    • pp.5-15
    • /
    • 2020
  • Dynamic behavior of pile foundation is significantly influenced by the dynamic interaction between soil and pile. Especially, in the sloping ground, the soil-pile interaction becomes very complex due to different resistance according to loading direction, soil residual displacement and so on. In this study, dynamic centrifuge tests were performed on the piles in the sloping ground. The model structures consisted of a single pile and 2×2 group pile. The soil-pile interaction has been investigated considering various conditions such as slope, single and group piles, and amplitude of input motions. The phase differences between soil and pile displacement and dynamic p-y curves were evaluated. The analysis results showed that the pile behavior was largely influenced by the kinematic forces between soil and pile. In addition, the dynamic p-y curve showed the complex hysteresis loop due to the effect of slope, residual displacement, and kinematic forces.

Comparative Analysis of Fall-Related Physicopsychological according to Virtual Exercise and Lumbar Stabilization Exercise in the Patient with Stroke (가상현실 체험형 운동과 요부안정화운동에 따른 뇌졸중환자의 낙상관련 신체·심리적 비교 분석)

  • Jung, Dae-In;Seo, Tae-Hwa;Ko, Dae-Sik
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.8
    • /
    • pp.274-282
    • /
    • 2012
  • This study conducted the following experiment to examine change of physicopsychological function on lumbar stabilization exercise(LSE) and virtual reality game training(Nintendo Wii Sport-NWS) to stroke patients subject for fall prevention. Psychological function was measured by falls efficacy with stroke patients and physical function was measured by static and dynamic balance on comparative analysis of pre, post exercise and each groups in 30 stroke patient subject. Static balance was measured by BBS, FRT, dynamic were measured by TUG, 10m walking test and falls efficacy with stroke patients was measured index of falls efficacy. These result lead us to the conclusion that each group were statistically improved at all physicopsychological test, but BBS, FRT, 10m walking test were more statistically improved at LSE group and falls efficacy with stroke patients were more improved at virtual reality game training group. Consequently, virtual reality game training would be lead to positive increment of physicopsychological function on stroke patient.

Theoretical Modeling of the Resonant Column Testing with the Viscosity of a Specimen Considered (점성을 고려한 공진주 실험의 이론적 모델링)

  • 조성호;황선근;권병성;강태호
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.145-153
    • /
    • 2003
  • The resonant column testing determines the shear modulus and material damping factor dependent on the shear strain magnitude, based on the wave-propagation theory. The determination of the dynamic soil properties requires the theoretical formulation of the dynamic behavior of the resonant column testing system. One of the theoretical formulations is the use of the wave equation for the soil specimen in the resonant column testing device. Wood, Richart and Hall derived the wave equation by assuming the linear elastic soil, and didn't take the material damping into consideration. Hardin incorporated the viscoelastic damping of soil in the wave equation, but he had to assume the material damping factor for the determination of the shear modulus. For the better theoretical formulation of the resonant column testing, this study derived a new wave equation to include the viscosity of soil, and proposed an approach for the solution. Also, in this study, the equation of motion for the testing system, which is another approach of the theoretical formulation of the resonant column testing, was also derived. The equation of motion leads to the better understanding of the resonant column testing, which includes the dynamic magnification factor and the phase angle of the response. For the verification of the proposed equation of motion for the resonant column testing, the finite element analysis was performed for the resonant column testing. The comparison of the dynamic magnification factors and the phase angles far the system response were performed.

A Geometrically Nonlinear Dynamic Analysis of Shallow Circular Arches Using Total Lagrangian Formulation (Total Lagrangian 문제형성에 의한 낮은 원호아치의 동적 비선형거동 해석)

  • Kim, Yun Tae;Kim, Moon Kyum;Hwang, Hak Joo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.2
    • /
    • pp.39-48
    • /
    • 1990
  • For shallow circular arches with large dynamic loading, use of linear analysis is no longer considered as practical and accurate. In this study, a method is presented for the dynamic analysis of the shallow circular arches in which geometric nonlinearity is dominant. A program is developed for analysis of the nonlinear dynamic behavior and for evaluation of the critical buckling loads of the shallow circular arches. Geometric nonlinearity is modeled using Lagrangian description of the motion and finite element analysis procedure is used to solve the dynamic equations of motion in which Newmark method is adopted as a time marching scheme. A shallow circular arch subject to radial step load is analyzed and the results are compared with those from other researches to verify the developed program. The critical buckling loads of shallow arches are evaluated using the non-dimensional parameter. Also, the results are compared with those from linear analysis.

  • PDF

Responses of a roll-pitch coupled nonlinear system to the primary resonance of the roll mode (횡동요 모드와 주공진 된 횡-종동요연성 비선형계의 응답)

  • 오일근
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.107-115
    • /
    • 1997
  • 비성형 동력학계로 모델링된 부유수송체의 동적응답을 조사하고 그 운동의 안정성을 해석하였다. 종동요 모우드의 고유주파수가 횡동요 모우드의 고유주파수의 두배가 되는, 즉, 2:1 내부공진 혹은 자기계수공진인 조건하에서, 이부유수송체는 한 운동 모우드의 직접가진에 의해 간접가진된 다른 모우드가 대진폭 응답을 보일 수 있음을 밝혔다. 또항, 종동요 모우드의 감쇠력은 비교적 넓은 범위의 운동에 대해 선형적임에 반해, 횡동요 모우드의 감쇠력은 점성의 영향이 대단히 커서 비선형성이 대단히 강한 것으로 알려져 왔다. 이 문제를 수학적으로 모델링하기 위하여, 종동요 모우드의 운동방정식에는 선형및 제곱형의 합의 형태인 감쇠력 모형을 사용하였다. 다중척도법을 사용하여 이 두가지 운동 모우드의 주기적 응답및 그의 안정성에 미치는 제곱형 비선형 횡동요 감쇠력의 영향을 밝혔다. 조우주기가 횡동요 모우드의 고유주기와 근사한 경우에 대하여 이 비선형계의 응답을 구하고 주파수-응답 곡선으로 나타내었다.

  • PDF

The Rocking Response of Three Dimensional Rectangular Liquid Storage Tank (3차원 구형 액체 저장 Tank의 Rocking응답)

  • 김재관;박진용;진병무;조양희
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.1
    • /
    • pp.23-34
    • /
    • 1998
  • A dynamic fluid-structure-soil interaction analysis method is developed to investigate the effects of translational and/or rocking motions on the seismic response of flexible rectangular liquid storage tanks founded on the deformable ground. The governing equation for the dynamics of 3-D rectangular tanks subjected to the translational and/or rocking motion is abtained by applying Rayleigh-Ritz method. The dynamic stiffness matrices of a rigid rectangular foundation resting on the surface of a stratum overlaid bedrock are calculated by hyperelement method. The seismic responses of 3-D flexible tank model founded on the deformable ground is calculated by combining the governing equation for the fluid-tank system with the dynamic stiffness matrix of th rigid surface foundation.

  • PDF

A Dynamic Analysis of Tension-Legged Circular Cylinder in Irregular Waves (인장계류된 원통형 실린더의 동적 거동 해석)

  • Hwang, Jae-Hyuck;Jo, Hyo-Jae;Kwon, Kang-Il
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.38 no.4
    • /
    • pp.259-264
    • /
    • 2002
  • The technology development for ocean resources can be represented by the increase of water depth. TLP, Tension Leg Platform, is one of the most feasible systems for deep sea development. TLPs show a complex dynamic behavior resulting from the dynamic interactions among platform, tether system and riser system due to their hydrodynamic and structural dynamic characteristics in waves. This paper aims at the theoretical and experimental analysis on motion response of TLP in waves. It is composed of two parts as follows ;(1) wave and wave loadings (2) TLP motion.