• Title/Summary/Keyword: 동적 마찰거동

Search Result 63, Processing Time 0.023 seconds

Three-Dimensional Wave Control and Dynamic Response of Floating Breakwater Moored by Piers (말뚝계류된 부방파제의 공간파랑제어 및 동적거동에 관한 연구)

  • 김도삼;윤희면
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.14 no.3
    • /
    • pp.183-191
    • /
    • 2002
  • In general, the salient features of the floating breakwater have excellent regulation of sea-water keeping the marine always clean, up and down free movement with the incoming and outgoing tides, capable of being installed without considering the geological condition of sea-bed at any water depth. This study discusses the three dimensional wave transformation of the floating breakwater moored by piers, and its dynamic response numerically. Numerical method is based on the boundary integral method and eigenfunction expansion method. It is known that pier mooring system has higher absorption of wave energy than the chain mooring system. Pier mooring system permit only vertical motion (heaving motion) of floating breakwater, other motions restricted. It is assumed in the present study that a resistant force as friction between piers and floating pontoon is not applied far the vertical motion of the floating breakwater. According to the numerical results, draft and width of the floating breakwater affect on the wave transformations greatly, and incident wave of long period is well transmitted to the rear of the floating breakwater, And the vertical motion come to be large for the short wave period.

Planar Motion of a Rigid Part Being Striked (타격되는 강체 부품의 평면 거동)

  • 박상욱;한인환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.787-792
    • /
    • 1996
  • The method of manipulation by striking a part and letting it slide until it comes to rest, has been very little studied. However, the manipulation method is not uncommon in our daily lives. We analyze the dynamic behavior of a rigid polygonal part being striked and sliding on a horizontal surface under the action of fiction. There are two parts in this problem; one is the impact problem, and the other is the sliding problem. We characterize the impact and sliding dynamics with friction for polygonal parts, and present the possibility of reverse calculation for motion planning of striking operations. Using a high speed video camera, the computer simulation results are experimentally verified.

  • PDF

Development of Frictional Wall Damper and Its Analytical Applications in R/C frame Structures (벽식마찰감쇄기의 개발 및 R/C 골조구조물에의 해석적 적용)

  • 조창근;박문호;권민호;강구수;서상길
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.5
    • /
    • pp.718-725
    • /
    • 2002
  • A wall type friction damper is newly Proposed in this paper to improve the performance of R/C framed structures under earthquake loads. Although traditional dampers are usually placed as bracing members, the application ot bracing-type dampers into R/C structures is not as simple as those of steel structures due to the connection between R/C members and dampers and the stress concentration in connection region. Proposed damper is consisted of Teflon-sheet slider and R/C shear wall. The damper can also avoid stress concentration and reduce P-Δ effect. To evaluate the performance of proposed damper, nonlinear dynamic analyses are carried on 10 story and 3 bay R/C structures with numerical model for the damper. It is shown that the damper reduces the inter-story drifts and the time-historic responses; especially the damper prevents from forming plastic hinges on the lower columns.

A study on the excavation rate of directional drilling using finite element method (유한요소법을 이용한 방향성 시추의 굴진율 연구)

  • Jung, Tae Joon;Shin, Younggy
    • Plant Journal
    • /
    • v.17 no.3
    • /
    • pp.42-46
    • /
    • 2021
  • The equation of motion of the drill string along the excavation trajectory was analyzed using the Lagrangian approach together with the finite element method (FEM). A drill string of circular cross section is constructed by combining a plurality of circular axes each having 12 degrees of freedom (DOF). FEM analysis can observe the vibration and dynamic changes of the entire drill string, and it is easy to apply comprehensive boundary conditions to reproduce the simulation of a realistic drill string. In this study, the constructed FEM motel was simulated. In order to apply the FEM program to the actual drill trajectory, the dynamic analysis of the curved beam was verified by comparison with the actual values. The dynamic change over time was observed.

Thermal, Frictional and Wear Behavior of Carbon Nanofiber/Poly(methyl methacrylate) Composites (탄소나노섬유/폴리(메틸 메타크릴레이트) 복합재료의 열적 및 마찰 마모 거동 연구)

  • Park Soo-Jin;Im Se-Hyuk;Lee Jae-Rock;Rhee John-M.
    • Polymer(Korea)
    • /
    • v.30 no.5
    • /
    • pp.385-390
    • /
    • 2006
  • In this work, the effect of carbon nanofiber (CNF) on thermal properties, and friction and wear behavior of CNF/PMMA composites were examined. While thermal properties of the composites were investigated with differential scanning calorimetry, thermograyimetric analyzer, and dynamic mechanical analyzer friction and wear behaviors were examined using a friction and wear tester. The glass transition temperature (Tg), integral procedural decomposition temperature (IPDT), storage modulus (E'), and tan ${\delta}$ appeared at higher temperatures with increasing CNF content, which were probably attributed to the presence of strong interactions between the carbonaceous fillers and the PMMA resins matrix. The wear loss in the composites decreased at 0.1 wt% CNF and then increased with 5-10 wt% CNF content. This was due to the existence of large aspect ratio CNF in PMMA which led to an alignment of PMMA chains and an increase of mechanical interlocking, resulting in the formation of crosslinked structures between CNF and PMMA in the composite.

Characteristics of Behavior of Steel Sheet Pile installed by Vibratory Pile Driver (진동타입기에 의해 시공되는 강널말뚝의 거동특성)

  • Lee, Seung Hyun;Kim, Byoung Il;Kim, Zu Cheol;Kim, Jeong Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.1C
    • /
    • pp.27-35
    • /
    • 2010
  • Instrumented steel sheet piles being driven by vibratory pile driver were installed in granular soil deposit and behaviors of the sheet piles were investigated. One of the instrumented steel sheet pile was installed without clutch and the other was installed with clutch. Sheet pile with clutch means that of installed in connection with pre-installed sheet pile. Penetration rates of sheet piles measured from depth measuring drum has shown that interlock friction had great effect on penetration speed of sheet pile. Clutch friction shows irregular distribution along the depths of penetration and its magnitude was estimated as 19.1kN/m. According to the accelerations obtained from accelerometer, it was seen that steel sheet pile behaviored nearly as a rigid body. Efficiency factor of an isolated sheet pile was 0.42 and that of the connected sheet pile was 0.71. Shapes of dynamic load transfer curves obtained from analysis of measuring devices was similar to those suggested by Dierssen.

Occurrence of Sand Liquefaction on Static and Cyclic Loading (정적 및 동적 하중에서 모래의 액상화 발생)

  • 양재혁
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.6
    • /
    • pp.235-244
    • /
    • 2001
  • Liquefaction may be caused by sudden decrease in the soil strength under undrained conditions. This loss of soil strength is related to the development of excess pore pressures. During this study, fines content affects the maximum and minimum void ratios are investigated. The results of static and cyclic triaxial test on silty saturated sands are presented. These tests are performed to evaluate liquefaction strength and static and cyclic behavior characteristics. The samples are obtained from Saemangeum and drying on air. The main results are summarized as follows : 1) The maximum and minimum void ratio lines follow similar trends. 2) Maximum and minimum void ratios are established at 20~30% fines content. 3) As confining pressures and overconsolidation ratio are increased, the resistance to liquefaction are increased. 4) Instability friction angles are increased with increasing initial relative density. 5) The resistance to liquefaction are decreased with increasing effective stress ratio.

  • PDF

Analysis of braking characteristics of electric multiple unit for train control system (열차제어시스템을 위한 전동차 제동특성 분석)

  • Choi, Don Bum;Oh, Sehchan;Kim, Min-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.887-895
    • /
    • 2018
  • This paper presents a braking model that can be used to design the safety distance of a train control system and a train braking system to increase the volume of traffic. For the braking model, a train set (electric multiple unit composed 6 cars) was tested. The factors that can affect the braking characteristics include the friction coefficient, braking pressure, and regenerative braking. The braking pressure was classified into service and emergency braking and reflected the characteristics of the vehicle. The external force acting on the running railway car was tested in accordance with KS R 9217, and the running resistance of the train is presented in the form of a polynomial. The dynamic behavior of the train running on a straight flat line was simulated using UM 8.3. The results were validated with experimental data, and the results were reasonable. With the validated model, a stopping distance was determined according to the initial braking speed and compared with the deceleration braking model. In addition, a safety distance for the train control system could be changed according to the frictional coefficient limits. These results are expected to be useful for analyzing the dynamic behavior of trains, and for analyzing various railway environments and improving the braking performance.

Frictional Loss Analysis of a Reciprocating Compressor with Thrust Ball Bearing (스러스트 볼 베어링이 적용된 왕복동형 압축기의 마찰손실 해석)

  • Kim, Tae-Jong
    • Tribology and Lubricants
    • /
    • v.27 no.2
    • /
    • pp.101-108
    • /
    • 2011
  • In this paper, a study on the frictional losses and dynamic behaviors of a reciprocating compression mechanism used in small refrigeration compressor is performed. In the problem formulation of the compressor dynamics, the viscous frictional force between piston and cylinder wall is considered in order to determine the coupled dynamic behaviors of piston and crankshaft supported on a thrust ball bearing. The solutions of the equations of motion of the reciprocating mechanism along with the time dependent Reynolds equations for the lubricating film between piston and cylinder wall and lubricant films of the journal bearings are obtained simultaneously. The hydrodynamic forces of journal bearings are calculated using finite bearing model and G$\hat{u}$m-bel boundary condition. And, a Newton-Raphson procedure was employed in solving the nonlinear equations of piston and crankshaft with a thrust ball bearing. The results explored the effects of design parameters on the frictional losses and dynamic stability of the compression mechanism.

Equivalent Stiffness Analysis of Rubber Bushing Considering Large Deformation and Size Effect (부싱의 대변형거동과 크기를 고려한 등가 강성 해석)

  • Lee, Hyun Seong;Sung, Myung Kyun;Kim, Heung Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.4
    • /
    • pp.271-277
    • /
    • 2017
  • In this paper, the amplitude and frequency dependent dynamic characteristics of the equivalent stiffness of a rubber bushing are investigated. A new mathematical model is proposed to explain the large deformation and size effect of a rubber bushing. The proposed model consists of elastic, viscous, and frictional stress components and the equivalent strain. The proposed model is verified using experimental results. The comparison shows that the proposed model can accurately predict the equivalent stiffness values of a rubber bushing under various magnitudes and frequencies. The developed model could be used to predict the dynamic equivalent stiffness of a rubber bushing in automotive engineering.