• Title/Summary/Keyword: 동적최적경로

Search Result 122, Processing Time 0.025 seconds

Multiobjective Routing and Scheduling for Vehicles Transporting Hazardous Materials (위험물 운송차량의 다목적 경로 및 스케줄 관리 방안)

  • Sin, Seong-Il
    • Journal of Korean Society of Transportation
    • /
    • v.25 no.5
    • /
    • pp.161-172
    • /
    • 2007
  • Vehicles transporting hazardous materials can make huge damage to people, properties and environment by traffic accidents. Therefore, transporting hazardous materials is a big issue with the cutting edge technology of communications in these days. However, despite this situation, Korean government gives limited efforts for systematic management, research and investment about hazardous materials. Accordingly, this research suggests the key path finding algorithm about management of real-time schedule and routes for vehicles transporting hazardous materials. Besides, the case study is progressed in transportation networks of Seoul in order to evaluate the reality of algorithm. Specifically, time-space network transformation is performed for time window attributes. In addition, this study proposes the techniques searching for non-dominated paths considering schedule by the multiobjective shortest path algorithm based on dynamic programming in dynamic transportation networks including multiobjective attributes.

Design of Max Speed Dynamic Heuristic with Real Time Transportation Data (실시간 도로 정보를 이용한 최고속력 동적 휴리스틱의 설계)

  • Moon, Dae-Jin;Cho, Dae-Soo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.827-830
    • /
    • 2008
  • The Center Based Navigation System(CBNS) used real time road data searches an optimal path. The other hand, the Terminal Based Navigation System(TBNS) used embedded road data searches a path that has less qualitative than the CBNS. But the TBNS has been favored, because it has no additional fees. Generally, TBNS has not used real time road data but it is recently able to use it with technique such as TPEG. However, it causes to increase a cost of exploring by using real time road data for improvement qualify of a path, because of limited performance. We propose a path-finding algorithm using a Maximum peed Dynamic Heuristic to improve quality and reduce a cost of exploring. Proposed method is to use a maximum road speed of appropriate region as dynamic heuristic for path-finding.

  • PDF

A Link-Based Label Correcting Multi-Objective Shortest Paths Algorithm in Multi-Modal Transit Networks (복합대중교통망의 링크표지갱신 다목적 경로탐색)

  • Lee, Mee-Young;Kim, Hyung-Chul;Park, Dong-Joo;Shin, Seong-Il
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.1
    • /
    • pp.127-135
    • /
    • 2008
  • Generally, optimum shortest path algorithms adopt single attribute objective among several attributes such as travel time, travel cost, travel fare and travel distance. On the other hand, multi-objective shortest path algorithms find the shortest paths in consideration with multi-objectives. Up to recently, the most of all researches about multi-objective shortest paths are proceeded only in single transportation mode networks. Although, there are some papers about multi-objective shortest paths with multi-modal transportation networks, they did not consider transfer problems in the optimal solution level. In particular, dynamic programming method was not dealt in multi-objective shortest path problems in multi-modal transportation networks. In this study, we propose a multi-objective shortest path algorithm including dynamic programming in order to find optimal solution in multi-modal transportation networks. That algorithm is based on two-objective node-based label correcting algorithm proposed by Skriver and Andersen in 2000 and transfer can be reflected without network expansion in this paper. In addition, we use non-dominated paths and tree sets as labels in order to improve effectiveness of searching non-dominated paths. We also classifies path finding attributes into transfer and link travel attribute in limited transit networks. Lastly, the calculation process of proposed algorithm is checked by computer programming in a small-scaled multi-modal transportation network.

Load Balancing of Unidirectional Dual-link CC-NUMA System Using Dynamic Routing Method (단방향 이중연결 CC-NUMA 시스템의 동적 부하 대응 경로 설정 기법)

  • Suh Hyo-Joon
    • The KIPS Transactions:PartA
    • /
    • v.12A no.6 s.96
    • /
    • pp.557-562
    • /
    • 2005
  • Throughput and latency of interconnection network are important factors of the performance of multiprocessor systems. The dual-link CC-NUMA architecture using point-to-point unidirectional link is one of the popular structures in high-end commercial systems. In terms of optimal path between nodes, several paths exist with the optimal hop count by its native multi-path structure. Furthermore, transaction latency between nodes is affected by congestion of links on the transaction path. Hence the transaction latency may get worse if the transactions make a hot spot on some links. In this paper, I propose a dynamic transaction routing algorithm that maintains the balanced link utilization with the optimal path length, and I compare the performance with the fixed path method on the dual-link CC-NUMA systems. By the proposed method, the link competition is alleviated by the real-time path selection, and consequently, dynamic transaction algorithm shows a better performance. The program-driven simulation results show $1{\~}10\%$ improved fluctuation of link utilization, $1{\~}3\%$ enhanced acquirement of link, and $1{\~}6\%$ improved system performance.

Design of An Abstraction Technique of Road Network for Adapting Dynamic Traffic Information (동적 교통 정보를 적용하기 위한 도로망 추상화기법의 설계)

  • Kim, Ji-Soo;Lee, Ji-wan;Cho, Dae-Soo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.199-202
    • /
    • 2009
  • The optimal path on real road network has been changed by traffic flow of roads frequently. Therefore a path finding system to find the optimal path on real network should consider traffic flow of roads that is changed on real time. The most of existing path finding methods do not consider traffic flow of roads and do not also perform efficiently if they use traffic information. In this paper, we propose an abstraction method of real road network based on the Terminal Based Navigation System (TBNS) with technique such as TPEG. TBNS can be able to provides quality of path better than before as using traffic information that is transferred by TPEG. The proposed method is to abstract real network as simple graph in order to use traffic information. It is composed boundary nodes based on real nodes, all boundary nodes that have the same of connection are merged together. The result of path finding on an abstract graph diminishes the search space.

  • PDF

Seam-line Determination in Image Mosaicking using Adaptive Cost Transform and Dynamic Programming (동적계획법과 적응 비용 변환을 이용한 영상 모자이크의 seam-line 결정)

  • Chon, Jae-Choon;Suh, Yong-Cheol;Kim, Hyong-Suk
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.7 no.2
    • /
    • pp.16-28
    • /
    • 2004
  • A seam-line determination algorithm is proposed to determine image border-line in mosaicing using the transformation of gray value differences and dynamic programming. Since visually good border-line is the one along which pixel differences are as small as possible, it can be determined in association with an optimal path finding algorithm. A well-known effective optimal path finding algorithm is the Dynamic Programming (DP). Direct application of the dynamic programming to the seam-line determination causes the distance effect, in which seam-line is affected by its length as well as the gray value difference. In this paper, an adaptive cost transform algorithm with which the distance effect is suppressed is proposed in order to utilize the dynamic programming on the transformed pixel difference space. Also, a figure of merit which is the summation of fixed number of the biggest pixel difference on the seam-line (SFBPD) is suggested as an evaluation measure of seamlines. The performance of the proposed algorithm has been tested in both quantitively and visually on various kinds of images.

  • PDF

Development of Optimal Routes Guidance System based on GIS (GIS기반 최적 경로안내 시스템 개발)

  • Yoo, Hwan-Hee;Woo, Hae-In;Lee, Tae-Soo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.10 no.1 s.19
    • /
    • pp.59-66
    • /
    • 2002
  • The rapid change of industrial structure causes to increase distribution cost and requires necessity of physical distribution system urgently. Traffic situation is getting extremely worse and traffic jam has led to increasing expense of physical distribution delivery which dominates 20% of distribution cost. In this situation, the shortest and most suitable path search system is required by modern people who must waste a lot of time for moving with a car or on the street as well as many companies. for these reasons, we developed the shortest-path-searching system applying the dijkstra algorithm which is one of the effective shortest path algorithm to GIS, and it was constructed by considering realistic urban traffic and the pattern of street in a physical situation. Also, this system was developed to be updated weight data automatically, considering the dynamic change of traffic situation such as a traffic information service which will be served in real time. Finally, we designed this system to serve on web by using MapObjects IMS.

  • PDF

An Equality-Based Model for Real-Time Application of A Dynamic Traffic Assignment Model (동적통행배정모형의 실시간 적용을 위한 변동등식의 응용)

  • Shin, Seong-Il;Ran, Bin;Choi, Dae-Soon;Baik, Nam-Tcheol
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.3
    • /
    • pp.129-147
    • /
    • 2002
  • This paper presents a variational equality formulation by Providing new dynamic route choice condition for a link-based dynamic traffic assignment model. The concepts of used paths, used links, used departure times are employed to derive a new link-based dynamic route choice condition. The route choice condition is formulated as a time-dependent variational equality problem and necessity and sufficiency conditions are provided to prove equivalence of the variational equality model. A solution algorithm is proposed based on physical network approach and diagonalization technique. An asymmetric network computational study shows that ideal dynamic-user optimal route condition is satisfied when the length of each time interval is shortened. The I-394 corridor study shows that more than 93% of computational speed improved compared to conventional variational inequality approach, and furthermore as the larger network size, the more computational performance can be expected. This paper concludes that the variational equality could be a promising approach for real-time application of a dynamic traffic assignment model based on fast computational performance.

Weighted Maxmin Fair Routing Algorithm in Connection-Oriented Network: Soft QoS(SQS) Service (연결지향 네트워크에서의 가중치 최소극대 공정 라우팅 알고리즘)

  • Won, Hyeon-Kwon;Kwon, Oh-Heum
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2002.11b
    • /
    • pp.1237-1240
    • /
    • 2002
  • 본 논문에서는 ATM과 같은 연결 지향적 고속네트워크에서, 가중치를 가진 Flow들의 대역폭 할당과 라우팅문제에 있어 공정성과 처리량에 대하여 고려해 보았다. 가중치클 고려치 않은 Flow들에 대한 최적경로설정문제에 대하여, 기존의 QoS 서비스와 Best-Effort 서비스에서 연구된 라우팅알고리즘에서 벗어나, 본 논문은 가중치를 가진 Flow들에 대하여 Soft-QoS서비스를 지원함에 있어서 공정성과 최대 처리량을 정의하고, 또한 이를 바탕으로 가중치 최소극대 대역폭 할당과 가중치 최소극대 공정라우팅 알고리즘을 제안한다. 종단간 최적경로를 설정하는데, 최소비용으로 Bottleneck-Link를 구하고 대역폭을 할당하기 위하여 그래프 상의 노드에 두 가지 색을 사용하는 그래프문제(Graph Coloring)와 최악의 경우를 감안하면서 경로를 선택하는 최소극대화 문제(Maxmin)를 결부시켜 살펴본다. 나아가 Soft-QoS 서비스의 최대값과 최소값을 고려한 가중치를 가진 Weighted-Flow들의 대역폭 할당과 경로설정에 있어, 동적인 네트워크 환경에 보다 효율적으로 접근 가능한 근사 알고리즘을 제안한다.

  • PDF

A Polynomial-time Algorithm to Find Optimal Path Decompositions of Trees (트리의 최적 경로 분할을 위한 다항시간 알고리즘)

  • An, Hyung-Chan
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.34 no.5_6
    • /
    • pp.195-201
    • /
    • 2007
  • A minimum terminal path decomposition of a tree is defined as a partition of the tree into edge-disjoint terminal-to-terminal paths that minimizes the weight of the longest path. In this paper, we present an $O({\mid}V{\mid}^2$time algorithm to find a minimum terminal path decomposition of trees. The algorithm reduces the given optimization problem to the binary search using the corresponding decision problem, the problem to decide whether the cost of a minimum terminal path decomposition is at most l. This decision problem is solved by dynamic programing in a single traversal of the tree.