• Title/Summary/Keyword: 동적기하

Search Result 284, Processing Time 0.023 seconds

Dynamic Equilibrium Position Prediction Model for the Confluence Area of Nakdong River (낙동강 합류부 삼각주의 동적 평형 위치 예측 모델: 감천-낙동강 합류점 중심 분석 연구)

  • Minsik Kim;Haein Shin;Wook-Hyun Nahm;Wonsuck Kim
    • Economic and Environmental Geology
    • /
    • v.56 no.4
    • /
    • pp.435-445
    • /
    • 2023
  • A delta is a depositional landform that is formed when sediment transported by a river is deposited in a relatively low-energy environment, such as a lake, sea, or a main channel. Among these, a delta formed at the confluence of rivers has a great importance in river management and research because it has a significant impact on the hydraulic and sedimentological characteristics of the river. Recently, the equilibrium state of the confluence area has been disrupted by large-scale dredging and construction of levees in the Nakdong River. However, due to the natural recovery of the river, the confluence area is returning to its pre-dredging natural state through ongoing sedimentation. The time-series data show that the confluence delta has been steadily growing since the dredging, but once it reaches a certain size, it repeats growth and retreat, and the overall size does not change significantly. In this study, we developed a model to explain the sedimentation-erosion processes in the confluence area based on the assumption that the confluence delta reaches a dynamic equilibrium. The model is based on two fundamental principles: sedimentation due to supply from the tributary and erosion due to the main channel. The erosion coefficient that represents the Nakdong River confluence areas, was obtained using data from the tributaries of the Nakdong River. Sensitivity analyses were conducted using the developed model to understand how the confluence delta responds to changes in the sediment and water discharges of the tributary and the main channel, respectively. We then used annual average discharge of the Nakdong River's tributaries to predict the dynamic equilibrium positions of the confluence deltas. Finally, we conducted a simulation experiment on the development of the Gamcheon-Nakdong River delta using recorded daily discharge. The results showed that even though it is a simple model, it accurately predicted the dynamic equilibrium positions of the confluence deltas in the Nakdong River, including the areas where the delta had not formed, and those where the delta had already formed and predicted the trend of the response of the Gamcheon-Nakdong River delta. However, the actual retreat in the Gamcheon-Nakdong River delta was not captured fully due to errors and limitations in the simplification process. The insights through this study provide basic information on the sediment supply of the Nakdong River through the confluence areas, which can be implemented as a basic model for river maintenance and management.

Evaluation of Contralateral Breast Surface Dose in FIF (Field In Field) Tangential Irradiation Technique for Patients Undergone Breast Conservative Surgery (보존적 유방절제 환자의 방사선치료 시 종속조사면 병합방법에 따른 반대편 유방의 표면선량평가)

  • Park, Byung-Moon;Bang, Dong-Wan;Bae, Yong-Ki;Lee, Jeong-Woo;Kim, You-Hyun
    • Journal of radiological science and technology
    • /
    • v.31 no.4
    • /
    • pp.401-406
    • /
    • 2008
  • The aim of this study is to evaluate contra-lateral breast (CLB) surface dose in Field-in-Field (FIF) technique for breast conserving surgery patients. For evaluation of surface dose in FIF technique, we have compared with other techniques, which were open fields (Open), metal wedge (MW), and enhanced dynamic wedge (EDW) techniques under same geometrical condition and prescribed dose. The three dimensional treatment planning system was used for dose optimization. For the verification of dose calculation, measurements using MOSFET detectors with Anderson Rando phantom were performed. The measured points for four different techniques were at the depth of 0cm (epidermis) and 0.5cm bolus (dermis), and spacing toward 2cm, 4cm, 6cm, 8cm, 10cm apart from the edge of tangential medial beam. The dose calculations were done in 0.25cm grid resolution by modified Batho method for inhomogeneity correction. In the planning results, the surface doses were differentiated in the range of $19.6{\sim}36.9%$, $33.2{\sim}138.2%$ for MW, $1.0{\sim}7.9%$, $1.6{\sim}37.4%$ for EDW, and for FIF at the depth of epidermis and dermis as compared to Open respectively. In the measurements, the surface doses were differentiated in the range of $11.1{\sim}71%$, $22.9{\sim}161%$ for MW, $4.1{\sim}15.5%$, $8.2{\sim}37.9%$ for EDW, and 4.9% for FIF at the depth of epidermis and dermis as compared to Open respectively. The surface doses were considered as underestimating in the planning calculation as compared to the measurement with MOSFET detectors. Was concluded as the lowest one among the techniques, even if it was compared with Open method. Our conclusion could be stated that the FIF technique could make the optimum dose distribution in Breast target, while effectively reduce the probability of secondary carcinogenesis due to undesirable scattered radiation to contra-lateral breast.

  • PDF

Fatigue fracture of different dental implant system under cyclic loading (반복하중에 따른 수종 임플란트의 피로파절에 관한 연구)

  • Park, Won-Ju;Cho, In-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.4
    • /
    • pp.424-434
    • /
    • 2009
  • Statement of problem: Problems such as loosening and fractures of retained screws and fracture of implant fixture have been frequently reported in implant prosthesis. Purpose: Implant has weak mechanical properties against lateral loading compared to vertical occlusal loading, and therefore, stress analysis of implant fixture depending on its material and geometric features is needed. Material and methods: Total 28 of external hexed implants were divided into 7 of 4 groups; Group A (3i, FULL $OSSEOTITE^{(R)}$Implant), Group B (Nobelbiocare, $Br{\aa}nemark$ $System^{(R)}$Mk III Groovy RP), Group C (Neobiotec, $SinusQuick^{TM}$ EB), Group D (Osstem, US-II). The type III gold alloy prostheses were fabricated using adequate UCLA gold abutments. Fixture, abutment screw, and abutment were connected and cross-sectioned vertically. Hardness test was conducted using MXT-$\alpha$. For fatigue fracture test, with MTS 810, the specimens were loaded to the extent of 60-600 N until fracture occurred. The fracture pattern of abutment screw and fixture was observed under scanning electron microscope. A comparative study of stress distribution and fracture area of abutment screw and fixture was carried out through finite element analysis Results: 1. In Vicker's hardness test of abutment screw, the highest value was measured in group A and lowest value was measured in group D. 2. In all implant groups, implant fixture fractures occurred mainly at the 3-4th fixture thread valley where tensile stress was concentrated. When the fatigue life was compared, significant difference was found between the group A, B, C and D (P<.05). 3. The fracture patterns of group B and group D showed complex failure type, a fracture behavior including transverse and longitudinal failure patterns in both fixture and abutment screw. In Group A and C, however, the transverse failure of fixture was only observed. 4. The finite element analysis infers that a fatigue crack started at the fixture surface. Conclusion: The maximum tensile stress was found in the implant fixture at the level of cortical bone. The fatigue fracture occurred when the dead space of implant fixture coincides with jig surface where the maximum tensile stress was generated. To increase implant durability, prevention of surrounding bone resorption is important. However, if the bone resorption progresses to the level of dead space, the frequency of implant fracture would increase. Thus, proper management is needed.

Comparison of Traffic Crash Characteristics Using Spatio-temporal Analysis in GIS-T (GIS-T 환경에서 시공간분석을 이용한 교통사고 특성 비교 - 도로 폐쇄 전후비교를 중심으로-)

  • Kim, Ho-Yong;Baik, Ho-Jong;Kim, Ji-Sook
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.13 no.2
    • /
    • pp.41-53
    • /
    • 2010
  • Traffic safety assessment is often accomplished by analyzing the number of crashes occurring in some geographic space over certain specific time duration. In this paper, we introduce a procedure that can efficiently analyze spatial and temporal changes in traffic crashes before-and-after implementation of a certain traffic controlling measure. For the analysis, crash frequency data before-and-after closing a major highway around St. Louis in Missouri was collected through Transportation Management System(TMS) database that is maintained by Missouri Department of Transportation (MoDOT). In order to identify any spatial and temporal pattern in crashes, each crash is pinpointed on a map using the dynamic segmentation in GIS. Then, the identified pattern is statistically confirmed using an analysis of variance table. The advantage of this approach is to easily assess spatial and temporal trend of crashes that are not readily attainable otherwise. The results from this study can possibly be applied in enhancing the highway safety assessment procedure. This paper also makes several suggestions for future development of a comprehensive transportation data system in Korea which is similar to MoDOT's TMS database.

Dynamic Response of Plate Structure Subject to the Characteristics of Explosion Load Profiles - Part A: Analysis for the Explosion Load Characteristics and the Effect of Explosion Loading Rate on Structural Response - (폭발하중 이력 특성에 따른 판 구조물의 동적응답 평가 - Part A: 폭발하중 특징 및 재하속도의 영향 분석 -)

  • Kang, Ki-Yeob;Choi, Kwang-Ho;Ryu, YongHee;Choi, JaeWoong;Lee, Jae-Myung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.2
    • /
    • pp.187-195
    • /
    • 2015
  • The gas explosions in offshore installations are known to be very severe according to its geometry and environmental conditions such as leak locations and wind directions, and a dynamic response of structures due to blast loads depends on the load profile. Therefore, a parametric study has to be conducted to investigate the effects of the dynamic response of structural members subjected to various types of load shapes. To do so, a series of CFD analyses was performed using a full-scale FPSO topside model including detail parts of pipes and equipments, and the time history data of the blast loads at monitor points and panels were obtained by the analyses. In this paper, we focus on a structural dynamic response subjected to blast loads changing the magnitude of positive/negative phase pressure and time duration. From the results of linear/nonlinear transient analyses using single degree of freedom(SDOF) and multi-degree-of freedom(MDOF) systems, it was observed that dynamic responses of structures were significantly influenced by the magnitude of positive and negative phase pressures and negative time duration.

New Development of Hybrid Concrete Support Structure with Driven Piles for Offshore Wind Turbines (하이브리드 해상풍력 파일 기초 콘크리트 지지구조(MCF) 개발)

  • Kim, Hyun Gi;Kim, Bum Jun;Kim, Ki Du
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.3
    • /
    • pp.307-320
    • /
    • 2013
  • This paper proposes a new hybrid support structure by the driven piles which removes disadvantages of the existing type of support structure for offshore wind turbines. The hybrid type of support structure is combined with concrete cone and steel shaft, and is supported not only by gravity type foundations but also by driven piles. For three dimensional analysis of the huge and thick concrete structure, a solid-shell element that is capable of exact modeling and node interpolations of stresses is developed. By applying wave theory of stream function and solid-shell element in XSEA simulation software for fixed offshore wind turbines, a quasi-static analysis and natural frequency analysis of proposed support structure are performed with the environmental condition on Southwest Coast in Korea. In the result, lateral displacement is not exceed allowable displacement and a superiority of dynamic behavior of new hybrid support structure is validated by natural frequency analysis. Consequently, the hybrid support structure presented in this study has a structural stability enough to be applied on real-site condition in Korea. The optimized structures based on the preliminary design concept resulted in an efficient structure, which reasonably reduces fabrication costs.

Developing a Portable Intelligent Projection System (휴대형 지능형 프로젝션 시스템 개발)

  • Park, Han-Hoon;Seo, Byung-Kuk;Jin, Yoon-Jong;Oh, Ji-Hyun;Park, Jong-Il
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.4 s.316
    • /
    • pp.26-34
    • /
    • 2007
  • Intelligent projection system indicates a system that displays desired images on an arbitrary screen in an arbitrary environment using projector without noticeable image distortion. In recent years, projectors have become widespread and ubiquitous due to their increasing capabilities and declining cost. Moreover, the size of projectors is getting smaller and handhold projectors are emerging. Thanks to these advances, the demand for intelligent projection system has been significantly increased and the demand has led to remarkable progress of the related techniques or technologies to intelligent projection system However, there are still some environments (or conditions, mainly dynamic ones) that intelligent projections systems cannot handle and they have limited the application area of intelligent projection systems. This paper exemplifies such environments (e.g. specular screen, dynamic screen) and propose effective solutions (i.e. multiple overlapping projectors, complementary pattern embedding) for thor And the usefulness of the solutions is verified through experimental results and user evaluation. Notice that the environments are considered not simultaneously but independently because it is impossible to consider them simultaneously by simply combining the solutions for each. Acually, a totally different solution would be necessary to consider them simultaneously. Therefore, we expect that the proposed methods would largely extend the application area of intelligent projection systems except for severely arbitrary environment.

4-D Inversion of Geophysical Data Acquired over Dynamically Changing Subsurface Model (시간에 대해 변화하는 지하구조에서 획득한 물리탐사 자료의 역산)

  • Kim, Jung-Ho;Yi, Myeong-Jong
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.117-122
    • /
    • 2006
  • In the geophysical monitoring to understand the change of subsurface material properties with time, the time-invariant static subsurface model is commonly adopted to reconstruct a time-lapse image. This assumption of static model, however, can be invalid particularly when fluid migrates very quickly in highly permeable medium in the brine injection experiment. In such case, the resultant subsurface images may be severely distorted. In order to alleviate this problem, we develop a new least-squares inversion algorithm under the assumption that the subsurface model will change continuously in time. Instead of sampling a time-space model into numerous space models with a regular time interval, a few reference models in space domain at different times pre-selected are used to describe the subsurface structure continuously changing in time; the material property at a certain space coordinate are assumed to change linearly in time. Consequently, finding a space-time model can be simplified into obtaining several reference space models. In order to stabilize iterative inversion and to calculate meaningful subsurface images varying with time, the regularization along time axis is introduced assuming that the subsurface model will not change significantly during the data acquisition. The performance of the proposed algorithm is demonstrated by the numerical experiments using the synthetic data of crosshole dc resistivity tomography.

  • PDF

An Analysis on the Stage-Discharge Relation Curve with the Temporal Variation of the River Bed -at Indogyo Station of the Han River- (하상(河床) 경년변화(經年變化)에 따른 수위(水位)-유량(流量) 관계곡선(關係曲線)의 해석(解析) -한강(漢江) 인도교지점(人道橋地點)을 중심(中心)으로-)

  • Cheong, Heung Soo;Lee, Won Hwan;Lee, Jae Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.3
    • /
    • pp.61-71
    • /
    • 1988
  • The stage-discharge relation curve(rating curve) is the basic formula in hydrologic analysis. It plays an important role in converting to the discharge from available flood water level data including the daily mean stage. However, the river induces a cross section change at the gauging station because of the composed material of the river bed and three processes of the stream flow; i.e., erosion, transportation, and sedimentation. Rating curve has to be revised according to the temporal variation of the river bed due to the those factors. In this study, the basic rating curve is developed with respect to the current river bed to convert the existing rating curves and also to seize the hydraulic and geometric characteristics for the temporal variation of the river bed, relationships among the basic rating curve and the existing rating curves, water level, cross sectional area, and flow velocity are analyzed. Indogyo station, which is not only the key station of the Han river but also greatly changed the river bed after completion of the Han river development plan during the year 1983 to 1986, was chosen for the study. In this study, the river bed is assumed in a dynamic equilibrium condition. The basic rating curve is developed using hydrologic data of the physical year of 1987. For a given discharge, relationships for conversion of previous data, stage and velocity, the current one are formulated. To verify the usefulness of the relationships, stage-cross sectional area and stage velocity formula are also derived. Both hydrologic method using continuity equation and statistical method by the rating curve are compared and checked, then the validation of the both are positively shown.

  • PDF

Adaptive Control of End Milling Machine to Improve Machining Straightness (직선도 개선을 위한 엔드밀링머시인 의 적응제어)

  • 김종선;정성종;이종원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.5
    • /
    • pp.590-597
    • /
    • 1985
  • A recursive geometric adaptive control method to compensate for machining straightness error in the finished surface due to tool deflection and guideway error generated by end milling process is developed. The relationship between the tool deflection and the feedrate is modeled by a modified Taylor's tool life equation. Without a priori knowledge on the variations off cutting parameters, time varying parameters are then estimated by an exponentially windowed recursive least squares method with only post-process measurements of the straightness error. The location error is controlled by shifting the milling bed in the direction perpendicular to the finished surface and adding a certain amount of feedrate with respect to the tool deflection model before cutting. The waviness error is compensated by adjusting the feedrate during machining. Experimental results show that location error is controlled within a range of fixturing error of the bed on the guideway and that about 60% reduction in the waviness error can be achieved within a few steps of parameter adaption under wide operating ranges of cutting conditions even if the parameters do not converge to fixed values.