DOI QR코드

DOI QR Code

낙동강 합류부 삼각주의 동적 평형 위치 예측 모델: 감천-낙동강 합류점 중심 분석 연구

Dynamic Equilibrium Position Prediction Model for the Confluence Area of Nakdong River

  • 김민식 (연세대학교 이과대학 지구시스템과학과) ;
  • 신혜인 (연세대학교 이과대학 지구시스템과학과) ;
  • 남욱현 (한국지질자원연구원 제4기환경연구센터) ;
  • 김원석 (연세대학교 이과대학 지구시스템과학과)
  • Minsik Kim (Department of Earth System Sciences, Yonsei University) ;
  • Haein Shin (Department of Earth System Sciences, Yonsei University) ;
  • Wook-Hyun Nahm (Quaternary Environment Research Center, Korea Institute of Geoscience and Mineral Resources) ;
  • Wonsuck Kim (Department of Earth System Sciences, Yonsei University)
  • 투고 : 2023.06.05
  • 심사 : 2023.08.21
  • 발행 : 2023.08.30

초록

삼각주는 하천이 운반하던 퇴적물이 호수나 바다, 하천의 본류와 같은 상대적으로 저 에너지의 환경을 만나 쌓인 퇴적 지형이다. 그 중 하천의 합류 지역에 생긴 삼각주는 하천 기하와 수리학적 특성에 큰 영향을 줄 수 있기 때문에 하천 관리 및 연구에서 중요하게 다루어진다. 최근 낙동강 내 대규모 준설과 보 건설로 하천 합류 지역의 평형상태가 깨지고 있다. 하지만 하천의 자연 회복성으로 인한 지속적인 퇴적으로, 인위적인 준설 이전의 자연상태로 되돌아가고 있다. 시계열 관측 결과 합류 지역의 삼각주는 준설 이후 지속적으로 성장하다가, 일정 크기에 도달하면 전반적인 크기의 변화없이 소규모의 성장과 후퇴를 반복하는 동적 평형상태에 이른다. 본 연구에서는 합류 지역 삼각주가 지류의 유사량과 본류의 유량에 따라 체결된 동적 평형 상태에 도달한다는 가정을 바탕으로 합류 지역의 퇴적-침식 작용을 설명하는 모델을 개발하였다. 모델은 지류 공급 퇴적물의 퇴적과 본류로 인한 침식 작용, 두 가지 기작을 토대로 한다. 모델에 사용된 낙동강을 대표하는 침식 계수는 낙동강 내 주된 합류 지역을 이용하여 추정했다. 개발된 모델을 이용하여 지류 유사량과 본류 유량에 따른 합류 지역 삼각주 평형 위치의 민감도 분석을 수행했고, 이후 주된 합류 지역의 연평균 유량, 유사량 데이터를 활용하여 낙동강 합류부 삼각주들의 동적 평형 위치를 예측하였다. 마지막으로 감천-낙동강에 기록된 일별 유량과 유사량 데이터를 활용하여 감천-낙동강 삼각주의 발달에 대한 모의 실험을 진행하였다. 모델을 통해 각 합류부 삼각주의 형성 여부를 예측하였고, 감천-낙동강 삼각주의 거동의 경향 또한 잘 예측하였지만, 단순화 과정에서 발생한 오차와 한계로 인해 감천-낙동강 삼각주에서 실제 발생하는 후퇴를 정확히 예측하지는 못하였다. 본 연구 결과는 합류 지역을 통한 낙동강 본류의 유사 공급량에 대한 기초 정보를 제공하여 하천 정비 및 유지에 기초 모델로 사용할 수 있다.

A delta is a depositional landform that is formed when sediment transported by a river is deposited in a relatively low-energy environment, such as a lake, sea, or a main channel. Among these, a delta formed at the confluence of rivers has a great importance in river management and research because it has a significant impact on the hydraulic and sedimentological characteristics of the river. Recently, the equilibrium state of the confluence area has been disrupted by large-scale dredging and construction of levees in the Nakdong River. However, due to the natural recovery of the river, the confluence area is returning to its pre-dredging natural state through ongoing sedimentation. The time-series data show that the confluence delta has been steadily growing since the dredging, but once it reaches a certain size, it repeats growth and retreat, and the overall size does not change significantly. In this study, we developed a model to explain the sedimentation-erosion processes in the confluence area based on the assumption that the confluence delta reaches a dynamic equilibrium. The model is based on two fundamental principles: sedimentation due to supply from the tributary and erosion due to the main channel. The erosion coefficient that represents the Nakdong River confluence areas, was obtained using data from the tributaries of the Nakdong River. Sensitivity analyses were conducted using the developed model to understand how the confluence delta responds to changes in the sediment and water discharges of the tributary and the main channel, respectively. We then used annual average discharge of the Nakdong River's tributaries to predict the dynamic equilibrium positions of the confluence deltas. Finally, we conducted a simulation experiment on the development of the Gamcheon-Nakdong River delta using recorded daily discharge. The results showed that even though it is a simple model, it accurately predicted the dynamic equilibrium positions of the confluence deltas in the Nakdong River, including the areas where the delta had not formed, and those where the delta had already formed and predicted the trend of the response of the Gamcheon-Nakdong River delta. However, the actual retreat in the Gamcheon-Nakdong River delta was not captured fully due to errors and limitations in the simplification process. The insights through this study provide basic information on the sediment supply of the Nakdong River through the confluence areas, which can be implemented as a basic model for river maintenance and management.

키워드

과제정보

본 논문은 한국지질자원연구원의 주요사업(23-3415; GP2021-007), 2018 과학기술정보통신부, 한국연구재단(NRF-2018R1A5A7025409, NP2018-026), 그리고 2021년도 정부(산업통상자원부)의 재원으로 한국에너지기술평가원(20212010200010, CO2 저장효율 향상 기술 개발)의 지원을 받아 수행된 연구입니다.

참고문헌

  1. Ahadiyan, J., Adeli, A., Bahmanpouri, F. and Gualtieri, C. (2018). Numerical simulation of flow and scour in a laboratory junction. Geosciences, v.8(5), 162. doi: 10.3390/geosciences8050162
  2. Choi, H.S., Mo, S.J. and Lee, S.H. (2015). An Analysis for the characteristics of headward erosion and separation zone due to bed discordance at confluence. Journal of Korea Water Resources Association, v.48(11), p.879-889. https://doi.org/10.3741/JKWRA.2015.48.11.879
  3. Dunne, K.B.J. and Jerolmack, D.J. (2020). What sets river width? Science Advances, v.6(41), eabc1505. doi: 10.1126/sciadv.abc1505
  4. Gualtieri, C., Filizola, N., de Oliveira, M., Santos, A.M. and Ianniruberto, M. (2018). A field study of the confluence between Negro and Solimoes Rivers. Part 1: Hydrodynamics and sediment transport. Comptes Rendus Geoscience, v.350(1-2), p.31-42. doi: 10.1016/j.crte.2017.09.015
  5. Ianniruberto, M., Trevethan, M., Pinheiro, A., Andrade, J.F., Dantas, E., Filizola, N., . . . Gualtieri, C. (2018). A field study of the confluence between Negro and Solimoes Rivers. Part 2: Bed morphology and stratigraphy. Comptes Rendus Geoscience, v.350(1-2), p.43-54. doi: 10.1016/j.crte.2017.10.005
  6. Jang, C.-L. (2017). Numerical simulation of flow characteristics and channel changes with discharge in the sharped meandering channel in the Naeseongcheon, Korea. Ecology and Resilient Infrastructure, v.4(1), p.24-33. doi: 10.17820/eri.2017.4.1.024
  7. Jang, C.-L., Kim, J. and Ko, I.H. (2006). Numerical simulation of flow and bed change at the confluence of the Geum river and Mihocheon. Journal of Wetlands Research, v.8(3), p.91-103.
  8. Jang, E.-K. and Ji, U. (2017). Numerical Analysis on Flow and Bed Change Characteristics by Discharge Variations at the Confluence of Nakdong and Geumho Rivers. Journal of the Korea Academia-Industrial Cooperation Society, v.18(12), p.659-667. doi: 10.5762/KAIS.2017.18.12.659
  9. Julien, P.Y. (2018). River mechanics: Cambridge University Press.
  10. Kim, G.-J. and Jang, C.-L. (2016). Numerical analysis of the behavior of bars in a compound channel with a drop structure. Ecology and Resilient Infrastructure, v.3(1), p.014-021. doi: 10.17820/eri.2016.3.1.014
  11. Lacey, G. (1930). STABLE CHANNELS IN ALLUVIUM (INCLUDES APPENDICES). Paper presented at the Minutes of the Proceedings of the Institution of Civil Engineers. doi: 10.1680/imotp.1930.15592
  12. Lane, S.N., Parsons, D.R., Best, J.L., Orfeo, O., Kostaschuk, R. and Hardy, R.J. (2008). Causes of rapid mixing at a junction of two large rivers: Rio Parana and Rio Paraguay, Argentina. Journal of Geophysical Research: Earth Surface, v.113(F2). doi: 10.1029/2006JF000745
  13. Metivier, F., Lajeunesse, E. and Devauchelle, O. (2017). Laboratory rivers: Lacey's law, threshold theory, and channel stability. Earth Surface Dynamics, v.5(1), p.187-198. doi: 10.5194/esurf-5-187-2017
  14. MOLIT (2013). Basic river plans for Gam River, Ministry of Land, Infrastructure and Transportation.
  15. Mosley, M.P. (1976). An experimental study of channel confluences. The Journal of Geology, v.84(5), p.535-562. https://doi.org/10.1086/628230
  16. Nazari-Giglou, A., Jabbari-Sahebari, A., Shakibaeinia, A. and Borghei, S.M. (2016). An experimental study of sediment transport in channel confluences. International Journal of Sediment Research, v.31(1), p.87-96. doi: 10.1016/j.ijsrc.2014.08.001
  17. NRFCO (2022). Ministry of Environment, Nakdong River Flood Control Office, Water Discharge Data, accessed December 2022 at URL: www.nakdongriver.go.kr
  18. Park, M., Kim, H.S. and Baek, C.H. (2018). Numerical analysis of flow and bed change at a confluence of the Namhan River and the Seom River using a two-dimensional model. Journal of Korea Water Resources Association, v.51(12), p.1273-1284. doi: 10.3741/JKWRA.2018.51.12.1273
  19. Penna, N., De Marchis, M., Canelas, O.B., Napoli, E., Cardoso, A.H. and Gaudio, R. (2018). Effect of the Junction Angle on Turbulent Flow at a Hydraulic Confluence. Water, v.10(4), 469. doi: 10.3390/w10040469
  20. Rhoads, B.L. and Kenworthy, S.T. (1995). Flow structure at an asymmetrical stream confluence. Geomorphology, v.11(4), p.273-293. doi: 10.1016/0169-555X(94)00069-4
  21. Savi, S., Tofelde, S., Wickert, A.D., Bufe, A., Schildgen, T.F. and Strecker, M.R. (2020). Interactions between main channels and tributary alluvial fans: channel adjustments and sediment-signal propagation. Earth Surf. Dynam., v.8(2), p.303-322. doi: 10.5194/esurf-8-303-2020
  22. Schindfessel, L., Creelle, S. and De Mulder, T. (2015). Flow patterns in an open channel confluence with increasingly dominant tributary inflow. Water, v.7(9), p.4724-4751. doi: 10.3390/w7094724
  23. Son, K.I. and Jang, C.-L. (2017). Characteristics of sediment transportation and sediment budget in Nakdong River under weir operations. Journal of Korea Water Resources Association, v.50(9), p.587-595. doi: 10.3741/JKWRA.2017.50.9.587
  24. Yuan, S., Tang, H., Li, K., Xu, L., Xiao, Y., Gualtieri, C., . . . Melville, B. (2021). Hydrodynamics, sediment transport and morphological features at the confluence between the Yangtze River and the Poyang Lake. Water Resources Research, v.57(3), e2020WR028284. doi: 10.1029/2020WR028284
  25. Yuan, S., Zhu, Y., Tang, H., Xu, L., Li, K., Xiao, Y. and Gualtieri, C. (2022). Planform evolution and hydrodynamics near the multichannel confluence between the Yarlung Zangbo River and the delta of the Niyang River. Geomorphology, v.402, 108157. doi: 10.1016/j.geomorph.2022.108157