• 제목/요약/키워드: 동역학 및 제어 시뮬레이션

Search Result 62, Processing Time 0.026 seconds

Effect of Damper Between Maglev Vehicles on Curve Negotiation (자기부상열차 차간 댐퍼의 곡선주행에의 효과 분석)

  • Kim, Ki-Jung;Han, Hyung-Suk;Kim, Chang-Hyun;Yang, Seok-Jo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.4
    • /
    • pp.581-587
    • /
    • 2013
  • In a magnetic train set composed of more than two cars, the installation of dampers between cars is carefully considered for improving both the ride quality and the safety, particularly during curve negotiation. In this study, a dynamic simulation of the ride quality and curve negotiation of a Maglev vehicle was carried out. The dynamic model is developed based on multibody dynamics. The presented full vehicle multibody dynamic model integrates the electromagnet model and its control algorithm. By using this model, the effects of the dampers are numerically analyzed. The proposed damper is installed on the vehicle and tested to analyze its effects. In this study, the simulation and measured results of the vehicle behavior and ride quality are discussed.

Development & Test of A Small-Sized Autonomous Underwater Vehicle "BOTO" (소형 자율무인잠수정 "BOTO"의 개발 및 실험)

  • Byun, Seung-Woo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.11
    • /
    • pp.103-109
    • /
    • 2012
  • Samsung Thales has developed a small-sized autonomous underwater vehicle "BOTO" verified by a mathematical model simulation. The hydrodynamic coefficients and drag force were experimented at circulating water channel for validating cruising performance of the AUV. Based on the mathematical model, we simulated turning radius and way-point tracking on horizontal plane using way-point tracking algorithm. In this paper we introduce the vehicle system and the sea trial test results will be shown.

Dynamics modeling and performance analysis for the underwater glider (수중 글라이더의 운동특성을 고려한 동역학 모델링 및 운동성능 해석)

  • Nam, Keon-Seok;Bae, Jae-Hyeon;Jeong, Sang-Ki;Lee, Shin-Je;Kim, Joon-Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.7
    • /
    • pp.709-715
    • /
    • 2015
  • Underwater gliders do not typically have separate propellers for forward motion. They generate propulsive forces based on the difference between their buoyancy and gravity. They can control the volume from the buoyancy engine to adjust the propulsive force. In addition, the attitude of the underwater glider is controlled by a rubberless motion controller. The motion controller can change the mass center and moment of inertia of the inner moving mass. Owing to the change in these parameters, the attitude of the underwater glider is changed. In this study, we derive nonlinear, six degree of freedom (DOF) mathematical models for the motion controller and buoyancy engine. Using these equations, we perform dynamic simulations of the proposed underwater glider, and verify the suitability of the design and dynamic performances of the proposed underwater glider. We then perform the motion control simulation for the pitch and roll angle, and analyze the dynamic performance according to the pitch and roll angles.

DYNAMIC MODELING AND REACTION WHEEL CONTROLLER DESIGN FOR FLEXIBLE SATELLITE AOCS (유연모드를 가진 인공위성의 자세제어를 위한 동역학 모델링 및 반작용휠 제어기 설계)

  • 우병삼;채장수
    • Journal of Astronomy and Space Sciences
    • /
    • v.14 no.2
    • /
    • pp.386-394
    • /
    • 1997
  • In this study, a few of the modeling methods for flexible spacecraft were introduced and adopted to the modeling of a 3-axes stabilization satellite. The generated model was put into pre-built rigid body attitude control loop. A Lumped Parameter Model(Global Mode Model: GMM) was recommended for the absence of the Finite Element Method(FEM) model. Finally, GMM was compared with FEM in terms of designing a control filter. A 1st-order filter was designed to meet requirements of the controller since the new flexible model was applied, and that filter was added to motor controller and axis controller. MATLAB/Simulink was used as a tool for design and simulation of the control loop and filter.

  • PDF

Target Tracking Control of a Quadrotor UAV using Vision Sensor (비전 센서를 이용한 쿼드로터형 무인비행체의 목표 추적 제어)

  • Yoo, Min-Goo;Hong, Sung-Kyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.2
    • /
    • pp.118-128
    • /
    • 2012
  • The goal of this paper is to design the target tracking controller for a quadrotor micro UAV using a vision sensor. First of all, the mathematical model of the quadrotor was estimated through the Prediction Error Method(PEM) using experimental input/output flight data, and then the estimated model was validated via the comparison with new experimental flight data. Next, the target tracking controller was designed using LQR(Linear Quadratic Regulator) method based on the estimated model. The relative distance between an object and the quadrotor was obtained by a vision sensor, and the altitude was obtained by a ultra sonic sensor. Finally, the performance of the designed target tracking controller was evaluated through flight tests.

Integrated Flight Simulation Program for Multicopter Drones by Using Acausal and Object-Oriented Language Modelica (비인과, 객체지향적 언어 모델리카를 이용한 멀티콥터형 드론의 통합 비행 시뮬레이션 프로그램)

  • Jin, Jaehyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.5
    • /
    • pp.437-446
    • /
    • 2017
  • An integrated flight simulation program for multicopter drones is presented. The program includes rigid body dynamics, propeller thrust, battery energy, control, and air. Using this program, users can monitor and analyze the states of drones along flight trajectories. As a programming language, Modelica has been chosen, that specializes in simulation program development. Modelica enables users to develop simulation programs efficiently due to acausal and object oriented properties. For missions including horizontal and vertical maneuvers, many dynamical states of drones have been analyzed with simulation results.

Unknown-Parameter Identification for Accurate Control of 2-Link Manipulator using Dual Extended Kalman Filter (2링크 매니퓰레이터 제어를 위한 듀얼 확장 칼만 필터 기반의 미지 변수 추정 기법)

  • Seung, Ji Hoon;Park, Jung Kil;Yoo, Sung Goo
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.6
    • /
    • pp.53-60
    • /
    • 2018
  • In this paper, we described the unknown parameter identification using Dual Extended Kalman Filter for precise control of 2-link manipulator. 2-link manipulator has highly non-linear characteristic with changed parameter thought tasks. The parameter kinds of mass and inertia of system is important to handle with the manipulator robustly. To solve the control problem by estimating the state and unknown parameters of the system through the proposed method. In order to verify the performance of proposed method, we simulate the implementation using Matlab and compare with results of RLS algorithm. At the results, proposed method has a better performance than those of RLS and verify the estimation performance in the parameter estimation.

A Design of Helicopter Control Law Rapid Prototyping Process Using HETLAS (HETLAS를 활용한 헬리콥터 비행제어 법칙 Rapid Prototyping 프로세스 설계)

  • Yang, Chang Deok;Jung, Ho-Che;Kim, Chang-Joo;Kim, Chong-Sup;Kim, Cheol-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.8
    • /
    • pp.731-738
    • /
    • 2015
  • The rapid prototyping process and development tool which enable the control law evaluation efficiently are needed to minimize the development cycle, cost and risk of aircraft flight control system. This paper describes a development process that integrates the designed control law into HETLAS to evaluate simulation effectively using nonlinear mathematical models. The desktop engineering simulator was developed using HETLAS for the piloted simulation evaluation of a various control modes and the procedure was developed, which quickly integrates the HETLAS into HQS(Handling Quality Simulator) and HILS(Hardware In the Loop Simulation) environments. This paper presents a rapid prototyping process using HETLAS that significantly shortens the integration process of the control law into the nonlinear math model, HETLAS, and allows the control law designs to be quickly tested in the piloted simulation and HILS environments.

Dynamic Modeling based Flight Control of Hexa-Rotor Helicopter System (헥사로터형 헬리콥터의 동역학 모델기반 비행제어)

  • Han, Jae-Gyun;Jin, Taeseok
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.4
    • /
    • pp.398-404
    • /
    • 2015
  • In this paper, we describe the design and performance of a prototype multi-rotor unmaned aerial vehicle( UAV) platform featuring an inertial measurement unit(IMU) based autonomous-flying for use in bluetooth communication environments. Although there has been a fair amount of study of free-flying UAV with multi-rotors, the more recent trend has been to outfit hexarotor helicopter with gimbal to support various services. This paper introduces the hardware and software systems toward very compact and autonomous hexarotors, where they can perform search, rescue, and surveillance missions without external assistance systems like ground station computers, high-performance remote control devices or vision system. The proposed system comprises the construction of the test hexarotor platform, the implementation of an IMU, mathematical modeling and simulation in the helicopter. Furthermore, the hexarotor helicopter with implemented IMU is connected with a micro controller unit(MCU)(ARM-cortex) board. The micro-controller is able to command the rotational speed of the rotors and to get the measurements of the IMU as input signals. The control simulation and experiment on the real system are implemented in the test platform, evaluated and compared against each other.

A Study on a Sliding Mode Control Algorithm for Dynamic Positioning System of a Vessel (선박의 동적위치유지 시스템을 위한 Sliding Mode 제어 연구)

  • Young-Shik Kim;Jang-Pyo Hong
    • Journal of Navigation and Port Research
    • /
    • v.47 no.4
    • /
    • pp.256-270
    • /
    • 2023
  • In this study, a sliding mode (SM) controller for dynamic positioning (DP) was specifically designed for a turret connection operation of a ship or an offshore structure in which an arbitrary point on the structure could be controlled as the motion center instead of the center of mass. The SM controller allows control of the arbitrary point and provides capability to manage uncertainties in the dynamics of ships and offshore structures, external forces caused by unknown changing marine environments, and transient performance of DP systems. The Jacobian matrix included in kinematic equations of the controlled object was modified to design the SM controller to control based on an arbitrary point of ships or offshore structures. To ensure robustness of the controller, the Lyapunov stability theory was applied in the design of the SM controller. In general, for robustness in DP control, gain scheduling based on a proportional-derivative (PD) control algorithm is employed. However, finding appropriate gains for gain scheduling complicates the application of DP systems. Therefore, in this study, the SM control algorithm was considered to mitigate the complexity of the DP controller for ships and offshore structures. To validate the proposed SM control algorithm, time-domain simulations were conducted and utilized to evaluate the performance of the control algorithm. The effectiveness of the proposed SM controller was assessed by comparing simulation results with results of a conventional PD control algorithm applied in DP control.