• Title/Summary/Keyword: 동력 전달장치

Search Result 144, Processing Time 0.029 seconds

A Study of Pin-Pinion Tooth Profile Applied with Cycloid Tooth Profile (Cycloid 치형을 적용한 Pin-Pinion 치형에 대한 연구)

  • Ham, Seong-Hun;Youm, Kwang-Wook
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.6
    • /
    • pp.45-50
    • /
    • 2014
  • In this paper, designed the driving part of a straight line precision transfer system which can be applied to industrial machines and industrial robots. The direction of power transfer and the output characteristic are similar to those of the conventional rack-pinion type, but it applied new pin-pinion type to the driving part. As a result, it achieved indefinite expandability in length and secured the convenience of installation. To determine the optimal contact of pin-pinion gear, it conducted a Cycloid tooth profile analysis.

A Study on Application of Transverse Flux Linear Motor to Indexer System (인덱서 시스템에 대한 횡축형 선형 전동기의 적용에 관한 연구)

  • Kim J.W.;Ahn J.B.;Kang D.H.;Jang J.H.;Kim J.M.;Bang D.J.;Jeon J.Y.
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.6
    • /
    • pp.553-559
    • /
    • 2004
  • The servo motor is used for the driving power source of the conventional linear conveyor system. The mechanical power transfer system is needed for converting the circular to the linear operation. But this system causes some problems of position error, the necessity of the periodical maintenance. In this paper the study on application of transverse flux linear motor(TFLM) is carried out for the indexer system of LCD processing because TFLM has much thrust per a volume than the conventional motor. TFLM is suitable system for the indexer system because of capacity of acceleration, maximum speed and precision of the position, etc.

Power Transmission Characteristics of a Hydro-Mechanical Transmission (정유압 기계식 변속장치의 동력전달특성)

  • Seong, Deok-Hwan;Kim, Hyeong-Ui;Lee, Geun-Ho;Kim, Hyeon-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.11
    • /
    • pp.1854-1862
    • /
    • 2001
  • In this paper, power flow characteristics of a hydromechanical transmission(HMT) are investigated using network analysis. The HMT used in this study consist of a hydrostatic unit(HSU), planetary gear sets, clutches and brakes providing forward 4 speeds and backward 2 speeds. Since the HMT power flows showing a closed loop and the HSU efficiency varies depending on the pressure and speed, a systematic approach is required to analyze the power transmission characteristics of the HMT. In order to analyze the closed loop power flow and the HSU power loss which changes depending on the pressure and speed, network model is constructed fur each speed range. In addition, an algorithm is proposed to calculate an accurate HSU loss corresponding to the experimental results. It is found from the network analysis that the torque and speed of each transmission element including the HSU can be obtained as well as direction of the power flow by the proposed algorithm. It is expected that the network analysis can be used in the design of relatively complicated transmission system such as HMT.

Experiments on Efficiency of Standing Type Waterwheel with Narrow Canal for Micro/Small Scale Hydro Power Plant (초소수력발전용 좁은 수로 고정형 수직수차 성능실험)

  • Kim, Dong-Jin;Lee, Kyong-Ho;Ahn, Kook-Chan;Kim, Bong-Hwan;Lee, Chi-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.5
    • /
    • pp.104-108
    • /
    • 2012
  • Recently, small scale hydropower needs to be developed due to its clean, renewable and abundant energy resources. However, suitable draft of hydro-turbine body in combination with differences in wheel blade shapes is not determined yet in the range of small hydropower and it is necessary to study for the effective draft in combination with type. Therefore, watermill shaped of 250mm diameter. hydro-turbine aiming 20 watt class generator is adopted in this study because of its simple structure and high possibility of applying to small hydropower. The result shows that effective draft for the turbine body is variable concerning the size of turbine and flow rate of water. Thus, the difference of water depth between fore and aft turbine body contributes to the increase of torque, angular momentum and power output.

Computationally Effective Optimization of Hybrid Vehicle Powertrain Design Using Characteristic Loss Evaluation (특성 손실 평가를 통한 하이브리드 자동차 동력전달장치의 빠른 설계 최적화)

  • Park, Seho;Ahn, Changsun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.6
    • /
    • pp.591-600
    • /
    • 2015
  • The efficiency of a powertrain system of hybrid vehicle is highly dependent on the design and control of the hybrid powertrain system. In other words, the optimal design of the powertrain systems is coupled with optimal control of the powertrain system. Therefore, the solution of an optimal design problem for hybrid vehicles is computationally and timely very expensive. For example, dynamic programming, which is a recursive optimization method, is usually used to evaluate the best fuel economy of certain hybrid vehicle design, and, thus, the evaluation takes tens of minutes to several hours. This research aims to accelerate the speed of efficiency evaluation of hybrid vehicles. We suggest a mathematical treat and a methodological treat to reduce the computational load. The mathematical treat is that the dynamics of system is discretized with sparse sampling time without loss of energy balance. The methodological treat is that the efficiency of the hybrid vehicle is inferred by characteristic loss evaluation that is computationally inexpensive. With the suggested methodology, evaluating a design candidate of hybrid powertrain system is taken few minutes, which was taken several hours when dynamic programming is used.

Accelerated Life Test Selection Study for Life Evaluation of Engine Type Drive Axle for Forklift (지게차용 엔진식 드라이브 액슬 수명평가를 위한 가속수명시험 선정 연구)

  • Jun-Young Kim;Yeong Jun Yu;Chul-Hee Lee
    • Journal of Drive and Control
    • /
    • v.20 no.3
    • /
    • pp.9-14
    • /
    • 2023
  • In this paper, the selection of a reliable accelerated life test code for a 2-ton forklift was accomplished by choosing the driving resistance coefficient failure-free test time based on a 10,000-hour B10 life. The overall life and average equivalent load of the vehicle were then calculated based on actual driving test conditions using the selected driving resistance coefficient. The gear train's accelerated life test code was selected by adjusting the equivalent load to a torque and rotation speed that did not exceed 125%(about 75HP) of the vehicle rated power. The safety of the test standards was validated by conducting an actual accelerated life test utilizing the proposed test method in this study and comparing the test result with the corresponding theoretical value. It is anticipated that the reliability of the accelerated life test in this paper will be enhanced, by incorporating actual driving performance data collected directly from the forklift and adjusting the conditions used in developing the accelerated life test code.

Structural Analysis of Power Transmission Mechanism of Electro-Mechanical Brake Device for High Speed Train (고속열차용 전기기계식 제동장치의 동력전달 기구물에 대한 구조해석)

  • Oh, Hyuck Keun;Beak, Seung-Koo;Jeon, Chang-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.237-246
    • /
    • 2019
  • The Electro-Mechanical Brake (EMB) is the next generation braking system for automobiles and railway vehicles. Current brake systems for high-speed trains generate a braking force using a pneumatic cylinder, but EMB systems produce that force through a combination of an electric motor and a gear. In this study, an EMB operation mechanism capable of generating a high braking force was proposed, and structural and vibration analyses of the gears and shafts, which are the core parts of the mechanisms, were performed. Dynamic structural analysis confirmed that the maximum stress in the analysis model was within the yield strength of the material. In addition, the design that maximizes the diameter of the motor shaft was found to be advantageous in strength, and large shear stress could be generated in the bolt fixing the gear and eccentric shaft. In addition, a test apparatus that can reproduce the mechanism of the analytical model was fabricated to measure the strain of the fixed bolt part, which is the most vulnerable part. The strain measurement results showed that the error between the analysis and measurement was within 10%, which could verify the accuracy of the analytical model.

Nonlinear Adaptive Control for Position Synchronization of a Gantry-Moving-Type Linear Motor (겐트리형 리니어 모터의 동기화를 위한 비선형 적응제어)

  • Han, Sang-Oh;Kim, In-Keun;Huh, Kun-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.12
    • /
    • pp.1925-1930
    • /
    • 2010
  • For high-speed/high-accuracy position control of a gantry-moving-type linear motor, we propose a nonlinear adaptive controller including a synchronization algorithm. Linear motors are easily affected by force ripple, friction, and parameter variations because there is no mechanical transmission to reduce the effects of model uncertainties and external disturbances. Synchronization error is also caused by skew motion, model uncertainties, and force disturbance on each axis. Nonlinear effects such as friction and ripple force are estimated and compensated for. The synchronization algorithm is used to reduce the synchronous error of the two side pillars. The performance of the controller is evaluated via computer simulations.

A Study of Life Characteristic of Hydraulic Hose Assembly by Adopting Complex Accelerated Model with Acceleration Factors of Pressure and Temperature (압력과 온도 복합가속모형을 적용한 유압호스 조립체 수명특성 연구)

  • Lee, Gi-Chun;Kim, Hyoung-Eui;Cho, You-Hee;Kim, Jae-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1697-1703
    • /
    • 2010
  • Hydraulic hoses are used as pipelines for transferring power from hydraulic systems in various machineries such as construction equipments, automobiles, and aircraft. Hydraulic hoses protect the system from vibration or impacts, and they are being used to transfer energy in all segments of the industry. In order to protect the system from various external environmental conditions, hydraulic hose assemblies must be able to withstand a wide range of temperatures and pressures, as well as variations in other factors. In previous studies, an acceleration model for the hydraulic hose assembly was developed by taking into account only one of the acceleration factors (temperature or pressure). Therefore, the objective of this study is to develop a comprehensive acceleration model that takes both temperature and pressure into consideration.

Flight Safety Improvement on Surion through Circuit Design and Software Reformation of Data Acquisition Unit (수리온 데이터획득/처리장치 동작회로 및 소프트웨어 개선을 통한 비행안전성 향상)

  • Jun, Byung-kyu;Jeong, Sang-gyu;Kim, Young-mok;Chang, In-ki
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.5
    • /
    • pp.370-378
    • /
    • 2015
  • The data acquisition unit, signal acquiring and processing equipment, processes and provides major data of an aircraft such as engine system, power train system, hydraulic system, etc. However, it had lots of failure related to the system during production test flight, and it is necessary to fix them perfectly as soon as possible because of the significance of the equipment. In this paper, it contains failure classification and analysis for each defect element to improve whole software as well as electrical circuit. Particularly, utilizing Fault Injection Method based interworking test, more efficient improvement activity was performed for not only equipment level but also aircraft level, and as a result, it is achieved that considerable betterment of Surion quality and flight safety.