• Title/Summary/Keyword: 동결 온도

Search Result 491, Processing Time 0.031 seconds

Effects of Cryopreservation on the Seed Germination and Growth Properties of Seedlings of Maackia amurensis (초저온 저장이 다릅나무 종자의 발아와 유묘의 생장특성에 미치는 영향)

  • 한심희;김찬수;장석성;이현주
    • Korean Journal of Plant Resources
    • /
    • v.17 no.2
    • /
    • pp.75-81
    • /
    • 2004
  • This study was conducted to investigate effects of cryopreservation by vitrification on the seed germination rate and growth and physiological properties of seedlings of Maackia amurensis. Cryopreservation significantly decreased the germination rate of seeds of M. amurensis, but the reduction of germination rate was mitigated by the treatment of cryoprotectant (plant vitrification solution, PVS2) before plugging into liquid nitrogen and fast thawing rate after cryopreservation. Long-term PVS2 exposure decreased seed germination rate, whereas cryopreservation time didn't have influence on seed germination rate. In addition, growth and physiological properties of seedlings were not affected by PVS2 exposing time and cryopreservation time. Therefore cryopreservation could be widely used as a technique of long-term ex situ conservation without any damage and deterioration of cells or tissues of the forest seeds. However, in order to increase the effect of cryopreservation, we have to develope the lower toxic cryoprotectant and suitable techniques to the structural or chemical properties of a variety of seeds.

A Study on The Frost Penetration Depth of Pavement with Field Temperature Data (도로포장 현장계측 온도데이터를 이용한 도로포장체의 동결깊이 연구)

  • Shin, Eun-Chul;Lee, Jae-Sik;Cho, Gyu-Tae
    • International Journal of Highway Engineering
    • /
    • v.13 no.1
    • /
    • pp.21-32
    • /
    • 2011
  • The frost penetration depth of pavement is usually estimated from the freezing index that made temperature data analysis of 30 years and decided the thickness of anti-frost layer. The field monitoring region in study was divided into five regions by freezing index 550~650$^{\circ}C{\cdot}$day, 450~550$^{\circ}C{\cdot}$day and 350~450$^{\circ}C{\cdot}$day. Each region has three-section of road pavement such as cutting area, boundary area of cutting and banking, and lower area of banking. The field monitoring system was established both in the section of anti-frost layer and in the section without anti-frost layer. The data analysis was conducted for determination of frost penetration depth within the paved road by the field monitoring system. The result showed that The temperature of subgrade without anti-frost layer shows below zero in centigrade for the region of freezing index 550~650$^{\circ}C{\cdot}$day, up and down around zero degree in subgrade for the region of freezing index 450~550$^{\circ}C{\cdot}$day, and there is no place existed below zero degree in subgrade for the region of freezing index below 450$^{\circ}C{\cdot}$day. With comparison of field frost penetration depth for the cross-sections of pavement, the cutting area shows the greatest frost penetration depth, and less influence of frost penetration depth for the boundary area of cutting and banking, and the least influenced for the lower area of banking.

SOLIDIFICATION OF AQUEOUS BINARY SOLUTIONS SA TURA TED PACKED BED FROM ABOVE (다공성물질이 충전된 수용성 혼합용액의 동결거동에 관한 실험 연구)

  • 최주열;김병철
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.16 no.3
    • /
    • pp.42-50
    • /
    • 1992
  • 다공성 물질이 충전된 밀폐용기 내에서 수용성 이원혼합용액($H_2O{+}NaCl$)이 수평한 상부전열면으로 부터 동결될 때 혼합용액의 초기농도, 액체의 과열 및 다공성물질의 입자직경 크기가 온도와 농도분포에 미치는 영향을 실험하였으며, 동결이 진행됨에 따라 이동하는 고액상 혼합영역의 계명위치를 측정하였다. 다공성물질은 평균직경이 2.85mm, 6mm인 구형의 유리구슬을 이용하였다. 수용성 혼합용액의 초기농도는 공융농도도 이하로 하였으며 상부 전열면은 공융온도 이하로, 하부전열면은 액상선온도 이상으로 유지하여 동결 실험한 결과 상부 전열면으로 부터 고체 영역, 고액상혼합영역, 액체영역으로 구분되었다. 액체의 초기농도가 5%인 경우 과냉현상이 관찰되었으나 10%, 15%인 경우 액체온도는 액상선 온도보다 더 높았다. 용액의 초기농도를 감소시킬수록 고체와 고액상혼합영역의 범위는 증대되었으며 고액상혼합영역과 고체영역의 계면은 더욱 강해진 자연대류에 의하여 2차원성이 증가된 형상을 보였다. 용액의 자연대류는 다공성물질의 직경이 클수록 증가되었으며 계면에서의 제융해현상은 관찰되지 않았다.

  • PDF

Effects of Freezing Rate and Storage Temperature on the Degree of Retrogradation, Texture and Microstructure of Cooked Rice (동결속도 및 저장온도가 취반된 쌀의 노화도, 조직감 및 미세구조에 미치는 영향)

  • Choi, Sung-Gil;Rhee, Chul
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.783-788
    • /
    • 1995
  • Cooked rices were frozen at four different rates(3, 5, 7 and 12 hr) of maximum ice crystal formation zone and stored at $-20^{\circ}C\;and\;-70^{\circ}C$ for 3 months. Freezing rate, storage temperature and storage period all affected the degree of retrogradation of cooked rice. As the maximum ice crystal formation zone increased from 3 hrs to 12 hrs, the degree of retrogradation of cooked rice increased from 14.9% to 40.0%. Further retrogradation occurred during the freezing storage and cooked rice stored at $-20^{\circ}C$ retrograded faster than that held at $-70^{\circ}C$. The hardness and adhesiveness of frozen cooked rice thawed in $40^{\circ}C$ water were measured. Hardness of the frozen cooked rice was higher than that of non-frozen sample and was higher at lower freezing rate. However, the hardness of cooked rice decreased after 3 months of storage. On the other hand, the adhesiveness decreased during the freezing processing, and adhesiveness decreased more rapidly at a higher freezing rate. However, the adhesiveness of cooked rice increased after 3 months of the storage, and the level of decrease was higher at $-70^{\circ}C$ than at $-20^{\circ}C$. After 3 months of storage, ice crystal size of frozen cooked rice became larger by recrystalization than that of frozen sample prior to storage. Microstructure of cooked rice was damaged by ice crystal formation and its growth when observed by scanning electron microscope.

  • PDF

Effect of Freezing Temperature on the Rehydration Properties of Freeze-Dried Rice Porridge (동결건조 쌀죽의 재수화 특성에 미치는 동결온도의 영향)

  • Koh, So-mi;Rhim, Jong-Whan;Kim, Jeong-Mok
    • Korean Journal of Food Science and Technology
    • /
    • v.43 no.4
    • /
    • pp.509-512
    • /
    • 2011
  • To study the effect of freezing rate on the quality of freeze-dried rice porridge, freeze-dried rice porridge products were prepared with rice porridge pre-frozen at three different temperatures of -20, -40, and -70$^{\circ}C$. The porridge properties such as microstructure, mechanical properties, textural properties, and rehydration rate were determined. Scanning electron microscopy images indicated that fewer air cells were obtained with a larger size of freeze-dried rice porridge frozen at -20$^{\circ}C$ compared with that frozen at -40 and -70$^{\circ}C$. In contrast, quick frozen products at -70$^{\circ}C$ had more dense texture with higher mechanical strength, whereas slow frozen products exhibited higher rehydration rates than those of quick frozen products. In conclusion, the proper choice of pre-freezing temperature plays a decisive role when preparing freeze-dried rice porridge with optimum quality and convenience.

Numerical Modeling for Freezing Phenomena in Food (식품 동결현상의 수학적 모델)

  • 공재열;김정한;김민용;김의웅
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.21 no.2
    • /
    • pp.207-212
    • /
    • 1992
  • To analyze the freezing phenomena of foodstuffs, the numerical freezing model with 3 steps was established. When water and 2% agar gel were used as samples, Neumann's solution was well matched with experimental results by the numerical model. However, in the case of 20% gelatin gel and pork meat, Weiner's solution was better than Neumann's solution. This numerical freezing model was proved to be good model to describe the freezing phenomena with phase change in the point of versatility and precision.

  • PDF

A Study for Predicting Adfreeze Bond Strength from Shear Strength of Frozen Soil (동결토 전단강도를 활용한 동착강도 산정에 관한 연구)

  • Choi, Chang-Ho;Ko, Sung-Gyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.10
    • /
    • pp.13-23
    • /
    • 2011
  • Bearing capacity of pile foundations in cold region is dominated by adfreeze bond strength between surrounding soil and pile perimeter. It denotes that adfreeze bond strength is the most important design parameter for foundations in cold region. Adfreeze bond strength is affected by various factors like 'soil type', 'frozen temperature', 'normal stress acting on soil/pile interface', 'loading rate', 'roughness of pile surface', etc. Several methods have already been proposed to estimate adfreeze bond strength during past 50 years. However, most methods have not considered the effect of normal stress for adfreeze bond strength. In this study, both freezing temperature and normal stress have been controlled as primary factors affecting adfreeze bond strength. A direct shear box was used to measure adfreeze bond strength between sand and aluminum under different temperature conditions. Based on the test results, the relation between shear strength of frozen sand and adfreeze bond strength have been investigated. The test results showed that both of shear strength and adfreeze bond strength tend to increase with decreasing frozen temperature or increasing confining pressure. The ratio of shear strength and adfreeze bond strength, expressed as $r_s$, decreased initially frozen section but increased at much lower frozen temperature and there were uniform intervals under the different normal stress conditions. A method for predicting adfreeze bond strength using $r_s$ has finally been proposed in this study.

Experimental Study of Freezing Characteristics and Antifreezing Method of Liquid Additive for Early Strength (액상형 조강제의 동결특성 및 동결방지 방안에 관한 실험적 고찰)

  • Lee, Mun-Hwan;Ryu, Deug-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.5
    • /
    • pp.647-653
    • /
    • 2007
  • In ready mixed concrete factory, in case of using the high molecular additive in winter especially the liquid additive for the early strength, it is required to check the stability. In this research, the freezing and gelling characteristics of the liquid additive for the early strength is reviewed, the material and mechanical solution are proposed to that the practical quality control method will be suggested. As the result, the Freezing temperature of the liquid additive for the early strength is $-11.8^{\circ}C$, and it is the lower than the temperature at which the strength is shown. By making with sodium silicate of $37{\pm}0.5%$ designed by $SiO_2\;and\;Na_2O$ in 0.31 of mol ratio, it minimizes the gelling at the lower temperature. On the other hand, facilities for storing and supplying the material should be set at $40^{\circ}C$ so the temperature distribution is well spreaded for practical operation.

Evaluation of Freezing Rate of Marine Clay by Artificial Ground Freezing Method with Liquid Nitrogen (액화질소를 이용한 인공동결공법 적용시 해성 점토지반의 동결속도 평가)

  • Choi, Hyun-Jun;Lee, Dongseop;Lee, Hyobum;Choi, Hangseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.4
    • /
    • pp.555-565
    • /
    • 2018
  • Nowadays, the artificial ground freezing (AGF) method has been used in many geotechnical engineering applications such as temporary excavation support, underpinning, and groundwater cutoff. The AGF method conducts the freezing process by employing a refrigerant circulating through a set of embedded freezing pipes to form frozen walls serving as an excavation support and cutoff wall. Two refrigerants of brine with the freezing temperature of $-20{\sim}-40^{\circ}C$ and liquid nitrogen with the freezing (evaporating) temperature of $-196^{\circ}C$ are commonly being used in geotechnical applications. This paper performed a series of field experiments to evaluate the freezing rate of marine clay in application of the AGF method. The field experiments consisted of the single freezing-pipe test and the frozen-wall formation test by circulating liquid nitrogen, which is a cryogenic refrigerant, into freezing pipes constructed at a depth of 3.2 m in the ground. The temperature of discharged liquid nitrogen was maintained through the automatic valve, and the temperature change induced by AGF method was measured at the freezing pipes and in the ground with time. According to the experimental results, the single freezing-pipe test consumed about 11.9 tons of liquid nitrogen for 3.5 days to form a cylindrical frozen body with the volume of about $2.12m^3$. In addition, the frozen-wall formation test used about 18 tons of liquid nitrogen for 4.1 days to form a frozen wall with the volume of about $7.04m^3$. The radial freezing rate decreased with increasing the radius of frozen body because the frozen area at a certain depth is proportional to the square of the radius. The radial freezing rate was formulated as a simple equation.

STUDIES ON THE FREEZING OF YELLOW SEA BREAM (옥돔의 동결에 관한 연구 2. 동결에 의한 옥돔조직의 변화)

  • SONG Dae-Jin;KANG Yeung-Joo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.12 no.3
    • /
    • pp.131-136
    • /
    • 1979
  • Histological changes of yellow sea bream, Branchiostegus japonicus japonicus, were observed under microscope during freezing storage for 6 months at $65^{\circ}C$ and $-35^{\circ}C$, and the results were compared with the muscle structure of fresh muscle. The freezing storage of yellow sea bream at $-^{\circ}C$ showed more changes in muscle structure than that stored at $-35^{\circ}C$. In the view point of the changes of the muscle structure, the yellow sea bream can be stored up to 1 month at $65^{\circ}C$ and 3 months at $-35^{\circ}C$. The freezing of yellow sea bream at $-5^{\circ}C$ showed higher extracellular freezing than that at $-35^{\circ}C$.

  • PDF