• Title/Summary/Keyword: 동결융해시험

Search Result 190, Processing Time 0.02 seconds

Comparative Study on Freeze-Thaw Durability of General Concrete and Pavement Concrete (일반콘크리트와 포장콘크리트의 동결융해 내구성에 대한 비교 연구)

  • Kim, Hyun-Joong;Lee, Beung-Duk;Lee, Ju-Gang
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.561-564
    • /
    • 2008
  • Concrete scaling is the progressive surface deterioration of susceptible subjected to freeze-thaw cycling in the presence of moisture. Particularly, it has been recognized that chlorides present in deicing agents can significantly increase concrete surface scaling. Domestic area of most be happened chloride deicer damage. Because daily mean temperature is below 0$^{\circ}C$ from the area of domestic most. Use of deicing chemicals has been and will continue to be a major part of highway snow and ice control methods. Chloride-containing chemicals such as calcium chloride or rock salt are main deicers for the road. Extensive use of chloride deicers is, however, not only the source of substantial cost penalties due to their corrosive action and ability to deterioration roadway surface materials but also the source of environmental damages. In this study, Use of (40, 27, 21MPa) pavement concrete analyze freeze-thaw test and scaling on the chlorides present.

  • PDF

Changes in Insulation Performance of Organic Insulating Materials for Building Construction by Accelerated Durability Test Conditions (가속내구성 조건에 따른 건축용 유기계 단열재의 단열성능 변화)

  • Lim, Soon-Hyun;Lee, Gun-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.6
    • /
    • pp.595-601
    • /
    • 2016
  • The insulation performance of the insulation currently used in building structures is reflected only during design based on initial performance and the reduction in heat insulation performance due to the degradation of long-term durability is not reflected. This study reviewed the degradation of heat insulation performance due to the durability degradation of insulating materials through the accelerated durability test. The study findings showed that the foamed polystyrene insulation bead method did not show performance degradation due to aging in the standard environmental condition and laboratory accelerated test condition but the performance is degraded in the freeze-thaw test condition. On the other hand, in the case of the extrusion method, the degradation of the heat insulation performance was less in the freeze-thaw test condition, but the rapid performance degradation was caused by the release of the internal gas at the beginning of aging. In addition, the hard polyurethane foam insulation showed better initial insulation performance than other insulation materials, but the performance was found to be degraded somewhat under laboratory accelerated test conditions and freeze-thaw test conditions.

Freezing-Thawing Resistance of Fiber Reinforced Polymers in Strengthening RC Members (구조보강용 FRP 복합체의 동결용해 저항성 평가 연구)

  • You, Young-Chan;Choi, Ki-Sun;Kim, Keung-Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.1
    • /
    • pp.182-189
    • /
    • 2010
  • The strengthening performance of FRPs(Fiber Reinforced Polymers) is directly affected by the environmental conditions such as freezing-thawing and moisture because FRPs are usually bonded on the concrete surface. It is, therefore, strongly required to evaluate a durability of bond between FRPs and concrete as well as FRP materials itself. The freezing-thawing resistance of FRPs is evaluated in this study with the variables of freezing-thawing conditions, types of FRP and freezing-thawing cycles. From the test results, it is found that tensile strength and pull-off strength of CFRP are not affected by the freezing-thawing. On the other hands, those of GFRP show a little degradation because of continuous water immersion during thawing process. But, cautions are needed on the bond durability between FRPs and concrete in case of continuous water supplying from adjacent to the concrete.

Freezing-Thawing Phenomenon and Durability-Improving Method of Plain Concrete Exposed to Outdoor in Winter Season (동절기 옥외 노출 콘크리트의 동결융해 현상과 내구성 증진방안)

  • Lee, Sang Hyun;Kim, Jung Jin;Sung, Cheon Woo
    • Magazine of the Korea Institute for Structural Maintenance and Inspection
    • /
    • v.18 no.4
    • /
    • pp.2-8
    • /
    • 2014
  • 본 고는 동절기 이후 무근 콘크리트의 상부에서 쉽게 발생하는 스케일링 현상에 주목하여 무근 콘크리트의 동해 발생원인을 고찰하고, 이에 대한 내구성을 향상시키기 위한 방안을 기존문헌조사를 통하여 1) 강도향상, 2) 진공배수공법 적용, 3) 흡수방지재 시공의 방법을 선정하였다. 그 후 각 방법의 동결융해저항성 향상 평가를 정량적으로 평가하기위하여 동결융해 시험을 통한 상대동탄성계수를 측정하였다. 그 결과 1), 2)번의 경우 동탄성계수가 약 15% 향상, 3)의 경우 강도에 따라 7~13%향상됨을 실험적으로 확인하였다. 따라서 상기의 방법 모두 무근 콘크리트의 동결융해 저항성 향상에 유효한 방법으로 판단되며, 이를 통해 무근콘크리트의 빈번히 발생하는 품질저하 및 이로인한 유지보수비용 절감을 도모할 수 있을 것으로 사료된다.

  • PDF

Variations of Engineering Geological Characteristics of the Cretaceous Shale from the Pungam Sedimentary Basin in Kangwon-do due to Freezing-Thawing (강원도 횡성군 풍암분지 백악기 셰일의 동결-융해에 따른 지질공학적 특성 변화)

  • Jang Hyun-Shic;Jang Bo-An;Lee Jun-Sung
    • The Journal of Engineering Geology
    • /
    • v.14 no.4 s.41
    • /
    • pp.401-416
    • /
    • 2004
  • We have collected shale specimens from the Pungam Basin in Kangwon province and investigated change of physical properties by freezing and thawing in water as well as in acidic fluid. The temperature range was $-20{\pm}2^{\circ}C\~15{\pm}2^{\circ}C$. Specimens were frozen for 12 hours and thawed in water for 8 hours. Then, they were saturated in the vacuum chamber for 4 hours to make specimens fully saturated. This procedure was 1 cycle. We have measured absorption, ultrasonic velocity, shore hardness, slake durability and uniaxial compressive strength at every 5th cycles. The physical properties increased or decreased as freezing and thawing cycles increased. Uniaxial compressive strength decreased by 0.40MPa per cycle in water and by 0.48MPa in acidic fluid. Elastic constant also decreased by 0.21GPa per cycle in water and by 0.30GPa in acidic fluid. Absorption increased by $0.29\%$ and $0.37\%$ per cycle in water and acidic fluid, respectively. These results indicate that decrease in uniaxial compressive strength, elastic constant and absorption by freezing and thawing in acidic fluid is more rapid than in water. Ultrasonic velocities, shore hardness and slake durability show no differences in water and acidic fluid. When we compared our results with the temperatures in the Hongchon during the winter season, $6\~12$ cycles may be equivalent to 1 year.

Classification of cold regions and analysis of the freeze-thaw repetition cycle based on heat transfer quantity by freezing test (실내동결시험을 통한 열류량 분석에 따른 동결-융해 조건 분석 및 한랭지역의 분류)

  • An, Jai-Wook;Seo, Jeong-Eun;Jung, Min-Hyung;Seong, Joo-Hyun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.6
    • /
    • pp.957-972
    • /
    • 2018
  • Tunnels constructed in cold regions can cause serious defects such as cracks and leaks due to external temperature changes in the portals and vents. In order to prevent the freezing damage of the tunnel, appropriate measures should be applied to the section where the freeze damage is concerned. However, the specific criteria and contents for judging whether or not the anti-freeze measures are applied are not presented. In this study, the laboratory freezing tests on the temperature changes of the concrete specimens under freezing conditions were carried out. And the freeze-thaw repetition cycle (F), which can judge the possibility of freezing damage, were presented based on the heat transfer quantity (W) by experimental results of case studies. Also, we propose a classification of cold regions considering the climatic characteristics of Korea for using it to efficient design and maintenance.

Geotechnical Characteristics of Frost-Susceptibility Soil Using Modified Freeze-Thaw Apparatus (변형된 동결-융해 시험장치를 이용한 동상민감성흙의 지반공학적 특성)

  • Shin, Eun-Chul;Ryu, Byung-Hyun;Park, Jeong-Jun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.8 no.1
    • /
    • pp.53-59
    • /
    • 2009
  • A new system of modified freeze-thaw testing apparatus is introduced. This system is developed to evaluate the geotechnical parameters and their dependence upon freezing-thawing history of frost-susceptibility soil. A necessary condition for stationary frost heaving is clarified in this paper. The method changes the thermal boundary condition up to the net heat flow at the freezing frost becomes zero. The effectiveness of this method is verified by freeze-thaw tests. Frost heaving observed after the application of the method is found to be due to another frost heaving action called long-term frost heaving. This frost heaving has already been studied and is considered ignorable as engineering factor because of its small heaving amount.

  • PDF

Evaluation of mechanical characteristics of marine clay by thawing after artificial ground freezing method (인공동결공법 적용 후 융해에 따른 해성 점토지반의 역학적 특성 평가)

  • Choi, Hyun-Jun;Lee, Dongseop;Lee, Hyobum;Son, Young-Jin;Choi, Hangseok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.1
    • /
    • pp.31-48
    • /
    • 2019
  • The artificial ground freezing (AGF) method is a groundwater cutoff and/or ground reinforcement method suitable for constructing underground structures in soft ground and urban areas. The AGF method conducts a freezing process by employing a refrigerant circulating through a set of embedded freezing pipes to form frozen walls serving as excavation supports and/or cutoff walls. However, thermal expansion of the pore water during freezing may cause excessive deformation of the ground. On the other hand, as the frozen soil is thawed after completion of the construction, mechanical characteristics of the thawed soil are changed due to the plastic deformation of the ground and the rearrangement of soil fabric. This paper performed a field experiment to evaluate the freezing rate of marine clay in the application of the AGF method. The field experiment was carried out by circulating liquid nitrogen, which is a cryogenic refrigerant, through one freezing pipe installed at a depth of 3.2 m in the ground. Also, a piezo-cone penetration test (CPTu) and a lateral load test (LLT) were performed on the marine clay before and after application of the AGF method to evaluate a change in strength and stiffness of it, which was induced by freezing-thawing. The experimental results indicate that about 11.9 tons of liquid nitrogen were consumed for 3.5 days to form a cylindrical frozen body with a volume of about $2.12m^3$. In addition, the strength and stiffness of the ground were reduced by 48.5% and 22.7%, respectively, after a freezing-thawing cycle.

A study on freeze-thaw evaluation criteria for road tunnels considering climate characteristics (국내 기후특성을 고려한 도로터널의 동결-융해 평가기준 연구)

  • Moon, Joon-Shik;An, Jai-Wook;Kim, Hong-Kyoon;Lee, Jong-Gun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.1
    • /
    • pp.121-133
    • /
    • 2020
  • Globally, the frequency and intensity of abnormal climate events are increasing. Since this can directly damage lives and property, it is important to establish and implement an appropriate maintenance strategy in response to abnormal weather. Facilities built in cold regions where cold wave or heavy snow occurs frequently can be more damaged by freeze-thaw than facilities located in other regions. However, there are no clear criteria for quantitatively identifying the damage of freeze-thaw and how to cope with it. Therefore, based on the results of indoor freezing tests, the freezing conditions considering regional climate characteristics were selected as one day at -14℃, two days at -7℃ or three days at -5℃. As a result, it was confirmed that they were in the freeze-thaw environment in order of Daegwallyeing (8.3 times), Cheorwon (5.3 times) and Taebeak (4.9 times) in Gangwon region. Through this study, the evaluation criteria of freeze-thaw of road tunnels were newly proposed. The freeze-thaw evaluation criteria of the road tunnel presented in this study can be used for the quantitative evaluation and maintenance strategy of tunnels in cold regions.

A study on the Freezing-Thawing Resistance for Repair Material of Concrete Structure (콘크리트 보수재료의 동결융해저항성에 관한 연구)

  • Lee, Bong-Chun;Chae, Sung-Tae;Jung, Sang-Hwa;Woo, Young-Je;Moon, Jae-Heum;Kim, Tae-Sang
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.621-624
    • /
    • 2008
  • Repair materials which applied to the concrete structures may have different quality characteristics depending on the environmental factors. Evaluation on durability of domestic repair materials have not yet secured enough quality performance on durability, mainly due to the lack of test methods resulted from various environmental factors. In this study, we carried out the tests on freezing and thawing resistance of domestic repair materials with different environmental factors applied under BS EN 13687, and analyzed the results by comparing with Korea's national test standards(KS F 4716). The results indicate that after the repetition of dry and wet conditions and the test on freezing and thawing with salt immersion resistance bond strength might show great difference depending on the type of repair materials and the size of sample. For securing better quality performance of repair materials, it is required to establish various standards on the test methods of freezing and thawing resistance with different environmental factors applied.

  • PDF