• Title/Summary/Keyword: 독성 식물

Search Result 583, Processing Time 0.025 seconds

Optimization of drying conditions for the conversion of 6-gingerol to 6-shogaol under subcritical water extraction from ginger (아임계수 추출에서 6-gingerol의 6-shogaol 전환을 위한 생강 건조 조건 최적화)

  • Ko, Min-Jung;Nam, Hwa-Hyun;Chung, Myong-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.51 no.5
    • /
    • pp.447-451
    • /
    • 2019
  • 6-gingerol can be converted to 6-shogaol, one of the predominant active compounds found in ginger, via processing such as drying and extraction. Subcritical water extraction is the environmentally friendly method of extraction of bioactive compounds using only purified water as a solvent. This study investigated subcritical water extraction ($190^{\circ}C$, 15 min) of 6-gingerol, and 6-shogaol from dried ginger (Zingiber officinale) including drying conditions such as temperature (room temperature, 60, $80^{\circ}C$, and freeze drying) and time duration for drying (1-4 h). The amount of 6-gingerol was found to be reduced, and that of 6-shogaol was found to be increased depending upon the water content of dried ginger. Upon oven-drying ginger at $60^{\circ}C$ for 2 h, the maximum yields of 6-gingerol ($0.18{\pm}0.02mg/g$ fresh weight), and 6-shogaol ($0.47{\pm}0.02mg/g$ fresh weight) were obtained upon subcritical water extraction.

Immunostimulatory activity and intracellular signaling pathways of a rhamnogalcaturonan II polysaccharide isolated from ginseng berry (인삼열매로부터 분리한 Rhamnogalacturonan II 다당의 면역활성과 세포 내 신호전달 기작 규명)

  • Cha, Ha Young;Son, Seung-U;Shin, Kwang-Soon
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.6
    • /
    • pp.722-730
    • /
    • 2021
  • In this study, we aimed to elucidate the intracellular signaling pathways for macrophage activation by the polysaccharide GBW-II purified from ginseng berry. GBW-II consists of 14 different sugars, including rarely observed sugars such as 2-O-methyl-xylose, apiose, aceric acid, 2-keto-3-deoxy-D-manno-2-octulosonic acid, and 2-keto-3-deoxy-D-lyxo-2-heptulosaric acid, which are typical RG-II component sugars. GBW-II enhanced the production of IL-6 and TNF-α in RAW 264.7 cells. In experiments evaluating specific inhibitor activity, it was found that the production of IL-6 was suppressed by inhibitors of SB, PD, and BAY, and the production of TNF-α was suppressed by PD and BAY. The experiments with neutralizing antibodies showed that TLR4 was involved in the stimulation of IL-6 production by GBW-II in RAW 264.7 cells, whereas TNF-α production was regulated through SR and TLR2. These results suggest that GBW-II activates the MAPK and NF-κB pathways via several macrophage receptors, including SR, TLR2, and TLR4, and subsequently induces the secretion of IL-6 and TNF-α.

Current Status and Future Perspectives of Natural Enemy Research in Korea: Analysis of Research Papers Published in the Korean Journal of Applied Entomology from 1990 to 2020 (우리나라 천적 연구의 현황 및 미래 전략: 1990년부터 2020년까지 한국응용곤충학회지 게재 논문 분석)

  • Cho, Jum Rae;Kim, Jeong Hwan;Seo, Meeja;Choi, Seon U;Lim, Un Taek;Lee, Kyeongyeoll
    • Korean journal of applied entomology
    • /
    • v.60 no.3
    • /
    • pp.287-304
    • /
    • 2021
  • Since 1995, researches on natural enemies have been conducted extensively in Korea. Research papers on natural enemies published in the Korean Journal of Applied Entomology from 1990 to 2020 were 130, which is 8.4% of all published papers during the same period. In 1990s, most research papers study the searching and biological characteristics of natural enemies, whereas the proportion of research papers related to the field application using the developed natural enemies has been increasing since 2010s. A total of 37 excellent natural enemies have been developed including 24 indigenous and 13 introduced natural enemies. In addition, 28 kinds of booklets and/or manuals were developed for field application of natural enemies. Although successes in research and development have been achieved since that period, more researches on search for and/or introduction of excellent natural enemy suitable for the Korean cultivation environment, mass production technology that can reduce cost, and quality control program in producing and distributing natural enemy remain to be pursued in the future. Furthermore, there is a need to develop the technology that can be used in compatible way with natural enemies and other crop protection agents including synthetic insecticides.

Xanthan Gum Reduces Aluminum Toxicity in Camelina Roots (잔탄검 혼합에 따른 카멜리나 뿌리의 알루미늄 독성 경감 효과)

  • Shin, Jung-Ho;Kim, Hyun-Sung;Kim, Sehee;Kim, Eunsuk;Jang, Ha-young;Ahn, Sung-Ju
    • Ecology and Resilient Infrastructure
    • /
    • v.8 no.3
    • /
    • pp.135-142
    • /
    • 2021
  • Biopolymers have been known as eco-friendly soil strengthening materials and studied to apply levees. However, the effect of biopolymer on vegetation is not fully understood. In this study, we analyzed the root growth of Camelina sativa L. (Camelina) when the xanthan gum was amended to soil in Aluminum (Al) stress conditions. Amendment of 0.05% xanthan gum increased root growth of Camelina under Al stress conditions. Under the Al stress condition, expression of aluminum activate malate transporter 1 (ALMT1) gene of Camelina root was induced but showed a lower level of expression in xanthan gum amended soil than non-amended soil. Additionally, the binding capacity of xanthan gum with Al ions in the solution was confirmed. Using morin staining and ICP-OES analysis, the Al content of the roots in the xanthan gum soil was lower than in the non-xanthan gum soil. These results suggest that xanthan gum amended soils may reduce the detrimental effects of Al on the roots and positively affect the growth of plants. Therefore, xanthan gum is not only an eco-friendly construction material but also can protect the roots in the disadvantageous environment of the plant.

Antioxidant and Anti-inflammatory Effects of Ethanol Extract of Aster yomena in RAW 264.7 Macrophages (RAW 264.7 대식세포에서 쑥부쟁이 추출물의 항산화 및 항염증 효능에 관한 연구)

  • Kim, Sung Ok;Jeong, Ji-Suk;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.29 no.9
    • /
    • pp.977-985
    • /
    • 2019
  • Aster yomena (Kitam.) Honda is an edible vegetable and perennial herb belonging to the Asteraceae family, and has been used for a long time for the prevention and treatment of various diseases. Although leaf extracts of A. yomena are known to have antioxidant and anti-inflammatory effects, accurate efficacy assessments are still inadequate. In this study, we investigated whether the antioxidant efficacy of ethanol extract of A. yomena leaf (EEAY) is correlated with the anti-inflammatory effect in RAW 264.7 macrophages. The results showed that EEAY significantly inhibited the hydrogen peroxide ($H_2O_2$)-induced growth inhibition in RAW 264.7 cells, which was associated with increased expression of nuclear factor erythroid 2-related factor-2 (Nrf2) and heme oxygenase-1 (HO-1). EEAY pretreatment also effectively prevented $H_2O_2$-induced reactive oxygen species generation and apoptosis through inhibition of caspase-3 activation and poly (ADP-ribose) polymerase degradation. Additionally, EEAY significantly increased the expression and production of interleukin-10, a representative anti-inflammatory cytokine, which was associated with increased expression of toll-like receptor 4 and myeloid differentiation factor 88 at transcriptional and translational levels. Furthermore, the increased production of nitric oxide (NO) by lipopolysaccharide was markedly abolished under the condition of EEAY pretreatment, and the inhibitory effect of NO production by EEAY was further increased by hemin, an HO-1 inducer. Overall, our results suggest that EEAY is able to activate the Nrf2/HO-1 signaling pathway to protect RAW 264.7 macrophages from oxidative and inflammatory stress.

Antioxidant and Anti-Inflammatory Activities of Ethanol Extract of Clematis trichotoma Nakai (할미밀망 에탄올 추출물의 항산화 및 항염증 활성 평가)

  • Jung, Jaemee;Shin, Mijoon;Jeong, Naeun;Hwang, Dahyun
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.53 no.2
    • /
    • pp.165-173
    • /
    • 2021
  • Clematis trichotoma Nakai (CTN) is a broad-leaved vine plant belonging to the family Ranunculus, native to Korea. Young leaves are used as food, and the stem and roots are used as medicinal materials. Antioxidant studies have been reported on the stems of CTN, but no studies have been conducted on the leaves. In this study, a 70% ethanol extract of CTN was prepared and its antioxidant and anti-inflammatory activities were investigated. For measuring the antioxidant activity, five assays (polyphenol and flavonoid content, reducing power, 2,2-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid), and 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity) were performed and CTN showed a concentration-dependent effect in all assays. To investigate the anti-inflammatory activity, we used RAW 264.7 cells. The concentrations (from 31.25 to 250 ㎍/mL) of CTN did not show cytotoxicity. CTN (250 ㎍/mL) inhibited dendritic transformation (34.4%) and also inhibited inflammation as seen by reduced levels of NO (77.4%), IL-6 (85.5%) and TNF-α (41.2%) compared to lipopolysaccharide (LPS). CTN (250 ㎍/mL) also suppressed the expression of the following genes: COX-2 (79.8%), iNOS2 (93.9%), IL-6 (87.6%), and TNF-α (77.3%) compared to LPS. These results demonstrated that CTN has excellent antioxidant and anti-inflammatory activities and can therefore be used as a natural biological resource.

Study on Reinforcing Skin Barrier and Anti-aging of Exosome-like Nanovesicles Isolated from Malus domestica Fruit Callus (사과 캘러스로부터 분리된 엑소좀-유사 Nanovesicles 의 피부 장벽 및 피부 노화 방지 개선 연구)

  • Seo, Yu-Ri;Lee, Kwang-Soo;Kang, Yong-Won
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.47 no.2
    • /
    • pp.139-145
    • /
    • 2021
  • Plant-derived exosome-like nanovesicles (PELNs) are known to include various biological activities and possess high biocompatibility. Because PELNs can influence immune responses, cell differentiation, and proliferation regulation, they can be applied in multiple industries. However, the studies on the skin physiological of exosome-like nanovesicles derived from plant callus are insignificant compared to nanovesicles derived from mammalian cells. In this study, callus was induced from apple fruit (Malus domestica), and exosome-like nanovesicles (ACELNs) were isolated for improving skin barrier and anti-aging. The yield of ACELNs was 6.42 × 109 particles/mL, and the particle size was ranged from 100 to 200 nm. HDF cells and HaCaT cells were concentration-dependent, increased in cell, and decreased in cytotoxicity. The cornified envelope formation was significantly increased compared to the control group. The COL1A1 expression and the FBN1 expression in HDF cells were increased. In addition, the ACELNs promoted collagen biosynthesis in UVA-irradiated HDF cells. These results might be considered as potential materials that could improve skin barrier and prevent skin aging.

Insect Juvenile Hormone Antagonists as Eco-friendly Insecticides (친환경 살충제로서의 곤충 유충호르몬 길항제)

  • Choi, Jae Young;Je, Yeon Ho
    • Korean journal of applied entomology
    • /
    • v.61 no.1
    • /
    • pp.101-108
    • /
    • 2022
  • Because of their specificity to target insects and relatively low toxicity to non-target organisms, insect growth regulators (IGRs) have been regarded as attractive alternatives to chemical insecticides. Commercially available IGRs are classified into juvenile hormone agonists (JHAs), ecdysone agonists (EAs), and chitin synthesis inhibitors (CSIs) according to their mode of action. Recently, JH-mediated interaction of methoprene-tolerant (Met), which is JH receptor, and its binding partners have been replicated in vitro using yeast cells transformed with the Met and FISC/CYC genes of A. aegypti. Using this in vitro yeast two-hybrid β-galactosidase assay, juvenile hormone antagonists (JHANs) have been identified from various sources including chemical libraries, plants, and microorganisms. As juvenile hormone (JH) is an insect specific hormone and regulates development, reproduction, diapause and other physiological processes, JHANs fatally disrupt the endocrine signals, which result in abnormal development and larval death. These results suggested that JHANs could be efficiently applied as IGR insecticides with a broad insecticidal spectrum. This review discuses JH signaling pathway mediated by Met and future prospects of JHANs as environmentally benign IGR insecticides.

Soil Health Assessment of Soil Washing and Landfarming Treated Soils (토양세척 및 토양경작 정화 토양의 건강성 평가)

  • Yong min Yi;Kijune Sung
    • Journal of Environmental Impact Assessment
    • /
    • v.32 no.2
    • /
    • pp.112-122
    • /
    • 2023
  • To restore the ecological function of contaminated soil and maximize the ecological services provided by the soil, besides the toxicity orrisk caused by pollutants, the functional aspects of the soil ecosystem should be considered. In this study, a method for evaluating the health of cleaned soil was presented, and the applicability of the proposed evaluation method was examined by applying it to soil treated with washing and landfarming. Productivity, habitat, water retention capacity, nutrient cycling, carbon retention capacity, and buffering capacity were used as soil health evaluation indicators. The results showed that the soil health was not completely recovered after remediation, and even in the case of the washed soil, the health was lower than before remediation. On the other hand, there was no significant change in soil quality due to oil pollution, but soil health deteriorated. Unlike the slightly improved soil quality after landfarming treatment, soil health was not completely restored. Therefore, the results of this study indicate that it is desirable to consider both soil quality and health when evaluating the remediation effect. The soil health evaluation method proposed in this study can be usefully utilized for the sustainable use of cleaned soil and to promote ecosystem services.

Anti-inflammatory effect of Crypsinus hastatus biorenovation extract (고란초 생물 전환 추출물의 항염증 효과)

  • Lee, Kyung-Mi;Choi, Byeong Min;Park, Tae-Jin;Hong, Hyehyun;Kim, Seung-Young
    • Journal of Applied Biological Chemistry
    • /
    • v.65 no.1
    • /
    • pp.49-55
    • /
    • 2022
  • Biorenovation is a method for converting materials using the enzyme properties of microorganisms. Natural products converted by that method increase physiological activity or reduce cytotoxicity. In this study, we investigated the anti-inflammatory activity of crypsinus hastatus prothallium (CH) and biorenovated CH prothallium (CHB) using RAW 264.7 cells stimulated with lipopolysaccharide (LPS). CHB inhibited the production of nitric oxide, prostaglandin E2 and cytokines (interleukin-6, interleukin-1β, tumor necrosis factor-α) compared to CH at a concentration of 50-200 ㎍/mL. In addition, CHB concentration of 200 ㎍/mL inhibited the expression of inducible nitric oxide synthase and cyclooxygenase-2 protein by LPS stimulation to the level of the untreated control group. These results indicate that CHB could be a novel anti-inflammatory agent for cosmetic and pharmaceutical ingredients.It also suggests that the application of biorenovation has potential usefulness in developing anti-inflammatory materials. It also suggests that the application of bio-renovation has potential usefulness in the development of inflammatory material. We applied Biorenovation technology to Distylium racemosum extract (DR) to generate Distylium racemosum biorenovation product (DRB), and investigated the anti-inflammatory properties of DRB in lipopolysaccharide (LPS)-treated RAW264.7 macrophages. We are applying technology to Biorenovation Distylium racemosum extract (DR) Distylium racemosum was to create a biorenovation product (DRB), lipopolysaccharide (LPS) investigated the anti-inflammatory properties of DRB in RAW264.7 macrophages treated for.