• Title/Summary/Keyword: 독립영양 미세조류

Search Result 8, Processing Time 0.025 seconds

Effects of Different Heterotrophic Bacteria on Phototrophic Activity of Chlorella sp. MF1907 (Chlorella sp. MF1907의 광합성 활성에 미치는 다양한 종속영양세균의 영향)

  • Noh, Young Jin;Jeong, So-Yeon;Kim, Tae Gwan
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.1
    • /
    • pp.101-110
    • /
    • 2021
  • Interactions between microalgae and heterotrophic bacteria are common in natural environments. This study investigated the effect of heterotrophic bacteria on the activity of the photosynthetic eukaryotic alga Chlorella sp. MF1907 when cocultured. A total of 31 heterotrophic bacterial isolates belonging to different genera were cocultured with MF1907. Interactions of the alga with Agromyces, Rhodococcus, Sphingomonas, Hyphomicrobium, Rhizobium, and Pseudomonas were positive, while those with Burkholderia, Paraburkholderia, Micrococcus, Arthrobacter, Mycobacterium, Streptomyces, Pedobacter, Mucilaginibacter, Fictibacillus, Tumebacillus, Sphingopyxis, and Erythrobacter were negative (p < 0.05). A turnover experiment demonstrating a switch from heterotrophic to autotrophic activity of MF1907 was performed using 16 isolates exhibiting apparent effects (positive, negative, or neutral). Compared with the results of the coculture experiment, eight isolates exhibited the same outcomes, while the others did not. Consistently, Pseudomonas and Agromyces showed a remarkable positive effect on MF1907 activity, and Burkholderia, Streptomyces, and Erythrobacter had a marked negative effect. Our results suggest that it may be possible to use the isolates for controlling populations of microalgae in natural and engineered environments.

Application of Saccharified Acorn-starch for Biomass and Lipid Accumulation of Microalgae (당화된 도토리의 전분이 미세조류 바이오매스 증식과 바이오오일 함량에 미치는 영향)

  • Choi, Hee-Jeong;Lee, Jung-Min
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.2
    • /
    • pp.197-204
    • /
    • 2016
  • The growth of the algae strain Chlorella vulgaris under mixotrophic conditions in the presence of saccharified acorn-starch (acorn-glucose) was evaluated with the objective of increasing biomass growth and triacylglycerols (TAGs) content. The results indicated that 81.3% of starch was converted to glucose in acorns. C.vulgaris algal strains grown with acorn-glucose produced higher biomass and TAGs content than with autotrophic growth. The highest biomass production and TAGs content with 3 g/L acorn-glucose were 12.44 g/L and 32.9%, respectively. Biomass production with 3 g/L acorn-glucose was 16.4 fold higher than under autotrophic growth condition. These findings suggested that 3 g/L acorn-glucose is economic and efficient for biomass production/productivity and TAGs content of microalgae. This study provides a feasible way to reduce the cost of bioenergy production from microalgae.

Growth Analysis of Chlamydomonas reinhardtii in Photoautotrophic Culture with Microdroplet Photobioreactor System (미세액적 광생물반응기를 활용한 광독립영양배양에서 Chlamydomonas reinhardtii의 성장성 분석)

  • Sung, Young Joon;Kwak, Ho Seok;Choi, Hong Il;Kim, Jaoon Young Hwan;Sim, Sang Jun
    • Korean Chemical Engineering Research
    • /
    • v.55 no.1
    • /
    • pp.80-85
    • /
    • 2017
  • Recently, microalgae which can produce high-value products have attracted increasing attention for biological conversion of $CO_2$. However, low photosynthetic efficiency and productivity have limited the practical use of microalgae. Thus, we developed microdroplet photobioreactor for the analysis of photoautotrophic growth of model alga, Chlamydomonas reinhardtii. $CO_2$ transfer rate was increased by integrating micropillar arrays and adjusting height of microchamber. These results were identified by change of cell growth rate and fluorescence intensity. Lastly, the photoautotrophic growth kinetics of C. reinhardtii in microdroplet photobioreactor were investigated under different $CO_2$ concentrations and light intensities for 96 hours. As a result, microdroplet photobioreactor was efficient platform for isolation and rapid evaluation of microalgal strains which have enhanced productivity of high-value products and growth performance.

Growth Characteristics of Microalgae Scenedesmus obliquus by LED Light Source (LED 광원에 따른 미세조류 Scenedesmus obliquus의 성장 특성)

  • Yoo, Yong Jin;Kim, Song Yi;Lee, Geon Woo;Lee, Young Bok;Kim, Jin Woo;Kim, Ho Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.70-77
    • /
    • 2020
  • Microalgae are independent organisms that perform photosynthesis and can alter the culture environment to increase accumulation of useful substances derived from microalgae. In this study, cell growth was measured by incubation for 39 days using MBBM, Neo medium, and seven light sources, which is the main factor affecting cell growth of microalgae S. obliquus. In the case of S. oliquus, which grew in MBBM and Neo medium, cell growth was highest under fluorescent light sources and Red2 LED (R660) light sources, and cell growth was lowest under Infra Red LED (R741) light sources. The average cell growth rate was 17.7% for MBBM and 15.4% for Neo. Comparing the effects of dry cell weight of Neo medium containing nutrients on the production of aquatic plants, MBBM and dry cell weight of Neo resulted in higher cell growth than Neo medium under all LED light sources except for Blue LED (B450). This proves that MBBM is more suitable for increasing the cell growth of microalgae than Neo medium and confirms that light source selection is important in the production of useful materials through mass cultivation of microalgae in the future.

Advanced wastewater treatment capacity and growth of Chlorella vulgaris by nitrogen and phosphorus concentrations (N, P 농도에 따른 Chlorella vulgaris의 성장 및 하수고도처리능 평가)

  • Han, Su-Hyun;Lee, Yunhee;Hwang, Sun-Jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.1
    • /
    • pp.77-82
    • /
    • 2013
  • The growth and removal capacity of nitrogen and phosphorus of Chlorella vulgaris were evaluated in artificial wastewater with different nitrogen and phosphorus concentrations as element growing components for microalgae growth. The nitrogen concentration was varied in 9, 15, 30 and 60 mg-N/L with fixed phosphorus concentration of 3 mg-P/L. The growth and phosphorus removal capacity of C. vulgaris were high at initial nitrogen concentration of 15 and 30 mg-N/L, and the corresponding N/P ratios calculated were 5 and 10. In the case of varying in 1.5, 3, 6 and 10 mg-P/L of phosphorus concentration with fixed nitrogen concentration of 30 mg-N/L, the growth and removal capacity of nitrogen and phosphorus were excellent with phosphorus concentration of 3 and 6 mg-P/L. The corresponding N/P ratios were shown as 10 and 5. Therefore, the appropriate N/P ratio was concluded between 5 and 10 for wastewater treatment using C. vulgaris.

Growth and N, P removal efficiency of Chlorella vulgaris according to the nitrogen sources and pH condition (질소원 및 pH 조절빈도에 따른 Chlorella vulgaris의 성장특성 및 하수고도처리능 평가)

  • Han, Su-Hyun;Kim, Sun-Jin;Kim, Tae-Hyeong;Cho, Ki-Ju;Lee, Yunhee;Hwang, Sun-Jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.6
    • /
    • pp.833-840
    • /
    • 2012
  • This study aimed to investigate growth rate and nutrient removal efficiency of Chlorella vulgaris according to nitrogen sources and frequency of pH adjustment. Nitrogen and phosphorus removal efficiencies were evaluated in the three different conditions using $NO_3{^-}$, $NH_4{^+}$ as a sole nitrogen source and mixed condition. Initial nutrient concentrations in artificial wastewater were 30 mg-N/L and 3 mg-P/L similar to secondary wastewater effluent. When nitrogen source was $NO_3{^-}$, there was no inhibition on the growth of C. vulgaris with adjusting pH every 24 hr while growth inhibition occurred with $NH_4{^+}$ caused by pH drop. N, P removal efficiencies were no significant depending on the nitrogen sources. As pH was adjusted to 7 by pH-stat, growth rate and nutrient removal efficiencies were increased compared to adjusting pH every 24 hr, however, growth rate and nutrient removal efficiencies were no significant depending on the nitrogen sources.

Characterization of a Korean Domestic Cyanobacterium Limnothrix sp. KNUA012 for Biofuel Feedstock (토착 남세균 림노트릭스 속 KNUA012 균주의 바이오연료 원료로서의 특성 연구)

  • Hong, Ji Won;Jo, Seung-Woo;Kim, Oh Hong;Jeong, Mi Rang;Kim, Hyeon;Park, Kyung Mok;Lee, Kyoung In;Yoon, Ho-Sung
    • Journal of Life Science
    • /
    • v.26 no.4
    • /
    • pp.460-467
    • /
    • 2016
  • A filamentous cyanobacterium, Limnothrix sp. KNUA012, was axenically isolated from a freshwater bloom sample in Lake Hapcheon, Hapcheon-gun, Gyeongsangnam-do, Korea. Its morphological and molecular characteristics led to identification of the isolate as a member of the genus Limnothrix. Maximal growth was attained when the culture was incubated at 25℃. Analysis of its lipid composition revealed that strain KNUA012 could autotrophically synthesize alkanes, such as pentadecane (C15H32) and heptadecane (C17H36), which can be directly used as fuel without requiring a transesterification step. Two genes involved in alkane biosynthesis-an acyl-acyl carrier protein reductase and an aldehyde decarbonylase-were present in this cyanobacterium. Some common algal biodiesel constituents-myristoleic acid (C14:1), palmitic acid (C16:0), and palmitoleic acid (C16:1)-were produced by strain KNUA012 as its major fatty acids. A proximate analysis showed that the volatile matter content was 86.0% and an ultimate analysis indicated that the higher heating value was 19.8 MJ kg−1. The isolate also autotrophically produced 21.4 mg g−1 phycocyanin-a high-value antioxidant compound. Therefore, Limnothrix sp. KNUA012 appears to show promise for application in cost-effective production of microalga-based biofuels and biomass feedstock over crop plants.

Selection of Filamentous Cyanobacteria and Optimization of Culture Condition for Recycling Waste Nutrient Solution (폐양액 활용을 위한 Filamentous Cyanobacteria의 선발 및 최적배양)

  • Yang, Jin-Chul;Chung, Hee-Kyung;Lee, Hyoung-Seok;Choi, Seung-Ju;Yun, Sang-Soon;Ahn, Ki-Sup;Sa, Tong-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.3
    • /
    • pp.177-183
    • /
    • 2004
  • The discharge of waste nutrient solution from greenhouse to natural ecosystem leads to the accumulation of excess nutrients that results in contamination or eutrophication. There is a need to recycle the waste nutrient solution in order to prevent the environmental hazards. The amount and kind of nutrients in waste nutrient solution might be enough to grow photosynthetic microorganisms. Hence in the present study, we examined the growth and mass cultivation of cyanobacteria in the waste nutrient solution with an objective of removing N and P and concomitantly, its mass cultivation. Four photosynthetic filamentous cyanobacteria (Anabaena HA101, HA701 and Nostoc HN601, HN701) isolated from composts and soils of the Chungnam province were used as culture strains. Among the isolates, Nostoc HN601 performed faster growth rate and higher N and P uptake in the BG-II ($NO_3{^-}$) medium when compared to those of other cyanobacterial strains. Finally, the selected isolate was tested under optimum conditions (airflow at the rate of $1L\;min^{-1}$. in 15 L reactor, initial pH 8) in waste nutrient solution from tomato hydroponic in green house condition. Results showed to remove 100% phosphate from the waste nutrient solution in the tomato hydroponics recorded over a period of 7 days. The growth rate of Nostoc HN601 was $16mg\;Chl-a\;L^{-1}$ in the waste nutrient solution from tomato hydroponics with optimum condition, whereas growth rate of Nostoc HN601 was only $9.8mg\;Chl-a\;L^{-1}$ in BG-11 media. Nitrogen fixing capacity of Nostoc HN601 was $20.9nmol\;C_2H_4\;mg^{-1}\;Chl-a\;h^{-1}$ in N-free BG-11. The total nitrogen and total phosphate concentration of Nostoc HN601 were 63.3 mg N gram dry weight $(GDW)^{-1}$ and $19.1mg\;P\;GDW^{-1}$ respectively. Collectively, cyanobacterial mass production using waste nutrient solution under green house condition might be suitable for recycling and cleaning of waste nutrient solution from hydroponic culture system. Biomass of cyanobacteria, cultivated in waste nutrient solution, could be used as biofertilizer.