• Title/Summary/Keyword: 도킹기술

Search Result 27, Processing Time 0.019 seconds

Ground Test of Docking Phase for Nanosatellite (초소형위성 지상 환경 도킹 시험)

  • Kim, Hae-Dong;Choi, Won-Sub;Kim, Min-Ki;Kim, Jin-Hyung;Kim, KiDuck;Kim, Ji-Seok;Cho, Dong-Hyun
    • Journal of Space Technology and Applications
    • /
    • v.1 no.1
    • /
    • pp.7-22
    • /
    • 2021
  • In this paper, we describe the results of the docking phase test in the ground environment of the rendezvous/docking technology verification satellite under development for the first time in Korea. rendezvous/docking technology is a high-level technology in space technology, which is also very important for accessing and performing tasks on relative objects in space orbit. In this paper, we describe the ground test results that the chaser finally docks the fixed target using an air bearing device. Based on the thrust control algorithm in the docking phase and the relative object recognition and relative distance estimation algorithm using visual-based sensors validated in this paper, we intend to use them for later expansion to rendezvous/docking algorithms in three-dimensional space for testing in space.

Impact of input ligand conformations on protein-ligand docking performances

  • Yang, Jin-Sol;Baek, Min-Gyeong;Seok, Cha-Ok
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.96-101
    • /
    • 2016
  • 대부분의 단백질-리간드 도킹 프로그램에서 리간드의 구조 유연성은 리간드의 회전 가능한 torsion angle들을 샘플링 하는데 국한된다. 따라서 도킹에 사용되는 초기 리간드 구조의 결합길이, 결합각, ring 구조 등에 따라 단백질-리간드 도킹의 성공여부가 달라질 수 있다. 실제 단백질-리간드 도킹 프로그램을 이용하여 단백질-리간드 상호작용을 연구하는 경우, 리간드의 구조를 임의의 구조 데이터베이스로부터 얻거나 다양한 리간드 3차원 구조 생성 프로그램 등을 이용하여 생성하게 된다. 따라서 리간드의 초기 구조가 단백질-리간드 도킹 프로그램의 성능에 어떤 영향을 주는지 살펴보는 것은 실제 단백질-리간드 도킹을 활용하는 경우에 단백질-리간드 도킹 프로그램의 성능이 어떨 것인지 알아볼 수 있다는 점에서 매우 중요하다. 본 연구에서는 리간드 분자의 초기 구조가 단백질-리간드 도킹에 미치는 영향을 알아보기 위해 30개의 단백질-리간드 복합체 표적에 대해 리간드의 초기 구조를 다양하게 생성하여 GalaxyDock으로 단백질-리간드 복합체 구조를 예측하였다. 도킹을 위한 리간드 분자를 만들 때 Ring library에서 여러 가능한 ring의 conformation을 가져오는 방법으로 리간드의 구조를 다양하게 만들었으며, 도킹 결과 한 가지 모델만 사용했을 때에 비해 도킹의 성공률이 70%에서 80%로 10% 증가한 것을 확인하였다. 또한 특히 구조적으로 유연한 ring이 리간드에 있는 경우 초기 구조가 도킹의 성공률에 큰 영향을 미치는 것을 확인할 수 있었다.

  • PDF

Docking Assessment Algorithm for AUVs with Uncertainties (불확실성이 포함된 무인잠수정의 도킹 평가 알고리즘)

  • Chon, Seung-jae;Sur, Joo-no;Jeong, Seong-hoon
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.5
    • /
    • pp.352-360
    • /
    • 2019
  • This paper proposes a docking assessment algorithm for an autonomous underwater vehicles (AUVs) with sensor uncertainties. The proposed algorithm consists of two assessments, state assessment and probability assessment. The state assessment verifies the reachability by comparing forward distance to the docking station with expected distance to reach same depth as the docking station and necessity for correcting its route by comparing calculated inaccessible areas based on turning radius of the AUV to position of the docking station. When the AUV and the docking station is close enough and the state assessment is satisfied, the probability assessment is conducted by computing success probability of docking based on the direction angle, relative position to the docking station, and sensor uncertainties of the AUV. The final output of the algorithm is decided by comparing the success probability to threshold whether to try docking or to correct its route. To verify the validation of the suggested algorithm, the scenario that the AUV approaches to the docking station is implemented through Matlab simulation.

Development of Probability-Based Assessment Index for Docking Process Assessment (무인잠수정의 도킹 과정 평가를 위한 확률 기반 평가지표 개발)

  • Chon, Seung-jae;Kim, Joon-young;Choi, Joong-lak;Jeong, Seong-hoon;Kim, Jong-hwa
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.3
    • /
    • pp.177-184
    • /
    • 2021
  • This paper proposes an assessment method using probability-based index for safe and successful underwater docking of autonomous underwater vehicles(AUVs) to the docking stations(DSs). The proposed method assesses the probability of docking according to the degree to which the state of the AUV is consistent with the state criteria for docking. The assessment is performed within a specific area considering the kinematic constraints and docking plans of the AUV. The assessment process is defining probability density function, calculating probabilities for reaching the docking station according to the difference to position and heading criteria, and computing the probability-based index in real-time. We verify the validity of the proposed method through analyzing the data acquired on operation test.

Molecular Docking System using Parallel GPU (병렬 GPU를 이용한 분자 도킹 시스템)

  • Park, Sung-Jun
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.12
    • /
    • pp.441-448
    • /
    • 2008
  • The molecular docking system needs a large amount of computation and requires super-computing power. Since the experiment requires a large amount of time, the experiment is conducted in the distributed environment or in the grid environment. Recently, researches on using parallel GPU of far higher performance than that of CPU in scientific computing have been very actively conducted. CUDA is an open technique by which a parallel GPU programming is made possible. This study proposes the molecular docking system using CUDA. It also proposes algorithm that parallels energy-minimizing-computation. To verify such experiments, this study conducted a comparative analysis on the time required for experimenting molecular docking in general CPU and the time and performance of the parallel GPU-based molecular docking which is proposed in this study.

Underwater Guidance System for AUV using Optical Sensor Array (광센서 배열을 이용한 무인잠수정의 종단유도장치 시스템)

  • Son, Hyeon-joong;Choi, Hyeung-sik;Kang, Jin-il;Sur, Joo-no;Jeong, Seong-hoon;Kim, Joon-young
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.2
    • /
    • pp.125-133
    • /
    • 2019
  • In this paper, a new study was performed on the docking of AUV to docking station using light and light sensor system under the water. For this, a guiding system for AUV loading sensor system composed of lense, light sensor, signal processor, and processor and docking system with LED are proposed. An analysis on light sensor system and light-collecting lense to obtain accurate relative angle and measurement accuracy was performed. To prove this, the system was built and a basic experiment was performed. Finally, the feasibility of the developed docking system was verified the test in the water tank.

Scenario Design for Verification of Rendezvous Docking Technology for Nanosatellite (초소형 위성의 랑데부/도킹 기술 검증을 위한 시나리오 설계)

  • Kim, Kiduck;Kim, Hae-Dong;Cho, Dong-Hyun
    • Journal of Space Technology and Applications
    • /
    • v.2 no.1
    • /
    • pp.30-40
    • /
    • 2022
  • This paper illustrates the trajectory design of drift distance recovery after initial launch and proximity operation when verifying rendezvous/docking technology using nanosatellites. The rendezvous/docking is a technology that is the basis of on-orbit servicing technology and is a preemptive process essential for approaching a target object. In particular, since it is difficult to verify in space, nanosatellites have recently been used to reduce the risk and cost of the development stage. Therefore, this paper not only introduces the configuration and specifications of thrusters for nanosatellites but also designs relative trajectories that can take into account the thrust limitations which come from the small size and low power of nanosatellites. In addition, we intend to be helpful in later designing scenarios according to the improvement of available thruster performance through comparison of trajectories and thrust usage with cases without thrust limitations.

The Design of Docking Drone System using Marker Detection (마커인식 및 레이저 센서를 이용한 드론의 도킹 시스템 설계)

  • Beck, Jong-Hwan;Park, Hee-Su;Oh, Se-Ryeong;Shin, Ji-Hun;Kim, Sang-Hoon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.10a
    • /
    • pp.755-758
    • /
    • 2016
  • 본 논문에서는 마커 인식과 레이저 센서를 이용하여 드론과 모듈 로봇 간의 상호작용이 가능하며 도킹 가능한 드론을 설명한다. 모듈 로봇은 4족 로봇으로 4개의 다리를 이용하여 보행이 가능하며 스스로 장애물 회피 등의 지능적 행동이 가능하다. 연구에서는 1대의 카메라를 이용하여 마커 인식을 하고 레이저 센서 송수신을 통하여 모듈 로봇과의 상호작용이 가능함을 보인다. 실험은 마커 인식과 레이저 센서를 융합하였을 때의 도킹 성공률이 뛰어났다는 결과를 보이며 드론의 페이로드가 다른 상황에서도 안정적인 결과를 보여 영상이나 방범, 농업 분야에서 특수한 기술을 갖는 로봇을 드론과의 도킹을 통해 다른 모듈화 된 로봇들과 교체하여 실효성을 극대화 시킬 수 있을 것이다.

A Study on Automatic Position Detection System for the Detachable Mobile Seat of a Vehicle for the Handicapped (장애인 차량을 위한 탈착식 시트의 자동 위치감지시스템에 관한 연구)

  • Youn, Jae-Woong;Lee, Soo Cheol
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.17 no.7
    • /
    • pp.25-33
    • /
    • 2012
  • This paper deals with the development of automatic docking system for the detachable mobile seat(DMS) of a vehicle for the handicapped people who are unable to ride in a car by oneself. Although such vehicles for the handicapped already exist, there is a need for a vehicle with improved docking method for convenience. This paper presents an automatic docking system using two ultrasonic sensors. In order to identify the precise location of the mobile seat in front of the vehicle door, the capability of ultrasonic sensor for detecting the part edge is analyzed and mathematical modeling is performed to measure the exact location of the side edge. And also, this paper presents an automatic docking method using this sensor system and the car lift which is provided in the inside of the car.

Sensor Fusion Docking System of Drone and Ground Vehicles Using Image Object Detection (영상 객체 검출을 이용한 드론과 지상로봇의 센서 융합 도킹 시스템)

  • Beck, Jong-Hwan;Park, Hee-Su;Oh, Se-Ryeong;Shin, Ji-Hun;Kim, Sang-Hoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.4
    • /
    • pp.217-222
    • /
    • 2017
  • Recent studies for working robot in dangerous places have been carried out on large unmanned ground vehicles or 4-legged robots with the advantage of long working time, but it is difficult to apply in practical dangerous fields which require the real-time system with high locomotion and capability of delicate working. This research shows the collaborated docking system of drone and ground vehicles which combines image processing algorithm and laser sensors for effective detection of docking markers, and is finally capable of moving a long distance and doing very delicate works. We proposed the docking system of drone and ground vehicles with sensor fusion which also suggests two template matching methods appropriate for this application. The system showed 95% docking success rate in 50 docking attempts.