• Title/Summary/Keyword: 도시 의사결정

Search Result 389, Processing Time 0.024 seconds

Comparative Spatial Analysis Between Inner-City Socialized Housing and Private Housing Developments in Metro Manila, the Philippines

  • Flores, Diane Angeline;Jang, Seongman;Lee, Seungil
    • Land and Housing Review
    • /
    • v.12 no.2
    • /
    • pp.13-32
    • /
    • 2021
  • Rapid urbanization has resulted in the unprecedented growth of population in Metro Manila, the Philippines and has led to a 'dual' housing crisis - vacant/unoccupied socialized housing and a chronic housing shortage or delayed housing supply. By developing two GIS-based statistical models, this study is to examine socialized housing in comparison with private housing with respect to location patterns, integration, accessibility, social and economic aspects, and vulnerability to environmental hazards. Multiple regression analysis was integrated with the GIS to identify significant variables that influence the spatial distribution of socialized housing. The comparison between the two regression models has shown that socialized housing is located in areas with inappropriate land use and poor accessibility to transportation facilities and built urban resources. Moreover, both regression models have proven the statistical significance of the vulnerability of socialized housing to environmental hazards. The finding explains how the current housing policies do not address the country's housing crisis, especially for the marginalized and low-income households. Thus, the findings provide implications for urban planners and local decision-makers in reforming the current policy interventions.

BIM Mesh Optimization Algorithm Using K-Nearest Neighbors for Augmented Reality Visualization (증강현실 시각화를 위해 K-최근접 이웃을 사용한 BIM 메쉬 경량화 알고리즘)

  • Pa, Pa Win Aung;Lee, Donghwan;Park, Jooyoung;Cho, Mingeon;Park, Seunghee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.2
    • /
    • pp.249-256
    • /
    • 2022
  • Various studies are being actively conducted to show that the real-time visualization technology that combines BIM (Building Information Modeling) and AR (Augmented Reality) helps to increase construction management decision-making and processing efficiency. However, when large-capacity BIM data is projected into AR, there are various limitations such as data transmission and connection problems and the image cut-off issue. To improve the high efficiency of visualizing, a mesh optimization algorithm based on the k-nearest neighbors (KNN) classification framework to reconstruct BIM data is proposed in place of existing mesh optimization methods that are complicated and cannot adequately handle meshes with numerous boundaries of the 3D models. In the proposed algorithm, our target BIM model is optimized with the Unity C# code based on triangle centroid concepts and classified using the KNN. As a result, the algorithm can check the number of mesh vertices and triangles before and after optimization of the entire model and each structure. In addition, it is able to optimize the mesh vertices of the original model by approximately 56 % and the triangles by about 42 %. Moreover, compared to the original model, the optimized model shows no visual differences in the model elements and information, meaning that high-performance visualization can be expected when using AR devices.

Algorithm for Correcting Error in Smart Card Data Using Bus Information System Data (버스정보시스템 데이터를 활용한 교통카드 정류장 정보 오류 보정 알고리즘)

  • Hye Inn Song;Hwa Jeong Tak;Kang Won Shin;Sang Hoon Son
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.3
    • /
    • pp.131-146
    • /
    • 2023
  • Smart card data is widely used in the public transportation field. Despite the inevitability of various errors occur during the data collection and storage; however, smart card data errors have not been extensively studied. This paper investigates inherent errors in boarding and alighting station information in smart card data. A comparison smart card data and bus boarding and alighting survey data for the same time frame shows that boarding station names differ by 6.2% between the two data sets. This indicates that the error rate of smart card data is 6.2% in terms of boarding station information, given that bus boarding and alighting survey data can be considered as ground truth. This paper propose 6-step algorithm for correcting errors in smart card boarding station information, linking them to corresponding information in Bus Information System(BIS) Data. Comparing BIS data and bus boarding and alighting survey data for the same time frame reveals that boarding station names correspond by 98.3% between the two data sets, indicating that BIS data can be used as reliable reference for ground truth. To evaluate its performance, applying the 6-step algorithm proposed in this paper to smart card data set shows that the error rate of boarding station information is reduced from 6.2% to 1.0%, resulting in a 5.2%p improvement in the accuracy of smart card data. It is expected that the proposed algorithm will enhance the process of adjusting bus routes and making decisions related to public transportation infrastructure investments.

A Development of Criteria for Evaluating School Zone by Utilizing Analytic Network Process (네트워크분석법(ANP)을 이용한 어린이보호구역 평가항목 개발)

  • Jeong, Kwang Seop;Kim, Tae Ho;Park, Je Jin;Won, Jai Mu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2D
    • /
    • pp.191-197
    • /
    • 2009
  • This study choose the Criteria by conducting survey questionnaire of expertise, ANP analysis, and reviewing literature to samples of School Zone in a synthetic and reasonable way. It draws the estimating factors including a variety of existing aspects (user, facility, operation and management, and education and institution) from the analyses and applies ANP to reflect the decision making process. The results show as follows: first, first level of weights presents proportion of 'facility' and 'user' takes 65% of total weights. It implies that the facility protects children from obstacles is the top priority of the settings. second, the second level of weights present similar importance with the first level. Facility management, road to school, surroundings, safety facility, decelerating facility hold approximately 72% of overall levels. This indicates that improving and repairing surroundings, and safety and decelerating facility are the first priority to consider. These estimating indicators will be properly utilized to rationally appoint prevention zone with reflecting various factors and social class.

Realtime Video Visualization based on 3D GIS (3차원 GIS 기반 실시간 비디오 시각화 기술)

  • Yoon, Chang-Rak;Kim, Hak-Cheol;Kim, Kyung-Ok;Hwang, Chi-Jung
    • Journal of Korea Spatial Information System Society
    • /
    • v.11 no.1
    • /
    • pp.63-70
    • /
    • 2009
  • 3D GIS(Geographic Information System) processes, analyzes and presents various real-world 3D phenomena by building 3D spatial information of real-world terrain, facilities, etc., and working with visualization technique such as VR(Virtual Reality). It can be applied to such areas as urban management system, traffic information system, environment management system, disaster management system, ocean management system, etc,. In this paper, we propose video visualization technology based on 3D geographic information to provide effectively real-time information in 3D geographic information system and also present methods for establishing 3D building information data. The proposed video visualization system can provide real-time video information based on 3D geographic information by projecting real-time video stream from network video camera onto 3D geographic objects and applying texture-mapping of video frames onto terrain, facilities, etc.. In this paper, we developed sem i-automatic DBM(Digital Building Model) building technique using both aerial im age and LiDAR data for 3D Projective Texture Mapping. 3D geographic information system currently provide static visualization information and the proposed method can replace previous static visualization information with real video information. The proposed method can be used in location-based decision-making system by providing real-time visualization information, and moreover, it can be used to provide intelligent context-aware service based on geographic information.

  • PDF

Influence of Oxygen Rate on Driver Fatigue During Simulated Driving (차량 시뮬레이터에서 산소농도에 따른 운전 피로감의 평가)

  • 성은정;민병찬;전효정;김승철;김철중
    • Science of Emotion and Sensibility
    • /
    • v.5 no.1
    • /
    • pp.71-78
    • /
    • 2002
  • Driving involves a series of complicated precesses requiring various human capacities, such as perception, will decision, and athletic functions. Consequently, it induces a high degree of continuous concentration of mind and tension from external stimulation, bringing fatigue to the driver, and driver fatigue is counted as one of the major causes of traffic accidents. Nevertheless, because of the complicated urban lives, traffic congestion, job characteristics, and so on, the drivers have to spend a longer time inside a vehicle, and the fatigue and stress thereof is almost unavoidable. We haute, therefore, turned our attention to the reduction in the fatigue during driving by supplying oxygen, and investigated in this research the drivers subjective fatigue evaluations and reaction time when oxygen is supplied in different rates. As a result, we have found that the subjective fatigue feeling is highest at low-rate O/Sub 2/ supply (18%), and fatigue feeling was comparatively reduced at high-rate O/Sub 2/ (30%). The sleepiness also showed the tendency to be reduced at high-rate O/Sub 2/ supply in the case of driving for 1 hour or more. The time for reaction to braking after the sign for urgent stop is given tends to show more substantial reduction at high-rate O/Sub 2/ supply than at low-rate O/Sub 2/ supply after 2 hours driving. It can, therefore, be deduced from the aforesaid results that the subjective responses and behavioral reactions tend to show reduced fatigue at the condition of high-rate O/Sub 2/ supply. Hence, it was suggested that drivers felt subjective fatigue while driving at low-rate O/Sub 2/ and the subjective fatigue and reaction time were reduced at high-rate O/Sub 2/. These findings suggest that the oxygen supply will reduce driver fatigue.

  • PDF

A Study on the Experts' Perception for Effective Application of Low Impact Development (저영향개발 기법의 효율적인 적용을 위한 전문가 인식 유형에 관한 연구)

  • Lee, HyunJi;Lee, Junga;You, Soojin;Chon, Jinhyung
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.44 no.3
    • /
    • pp.65-78
    • /
    • 2016
  • LID(Low-Impact Development) has received a great deal of attention in the field of urban water management. The spread of LID technologies as a natural drainage system has led to a rise in consideration of the applicability of policy in Korea. In this respect, the purpose of this study is to analyze experts' perception about utilization, applicability of policy, and improvements of LID by using Q-methodology. The sample included 31 experts who were government employees, landscape architects, researchers, and professors related to LID. All participants completed a 28-statement Q-sort task. Data was analyzed by using QUANL computer software. As a result of this study, four distinct experts' perceptions about LID are identified: Policy Enforcement Oriented Type, Expert Understanding Oriented Type, Manual Oriented Type, and Effectiveness Oriented Type. This study suggested appropriate directions related to LID technologies, and it is helpful to apply the domestic type's LID and increase the efficiency of LID in Korea. However, this study has a limit in which the viewpoint of the researcher intervenes: a complementary searcher is needed to verify the validity by type in policy decision-making.

Application of Photo-realistic Modeling and Visualization Using Digital Image Data in 3D GIS (디지털 영상자료를 이용한 3D GIS의 사실적 모델링 및 가시화)

  • Jung, Sung-Heuk;Lee, Jae-Kee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.1
    • /
    • pp.73-83
    • /
    • 2008
  • For spatial analysis and decision-making based on territorial and urban information, technologies on 3D GIS with digital image data and photo-realistic 3D image models to visualize 3D modeling are being rapidly developed. Currently, satellite images, aerial images and aerial LiDAR data are mostly used to build 3D models and textures from oblique aerial photographs or terrestrial photographs are used to create 3D image models. However, we are in need of quality 3D image models as current models cannot express topographic and features most elaborately and realistically. Thus, this study analyzed techniques to use aerial photographs, aerial LiDAR, terrestrial photographs and terrestrial LiDAR to create a 3D image model with artificial features and special topographic that emphasize spatial accuracy, delicate depiction and photo-realistic imaging. A 3D image model with spatial accuracy and photographic texture was built to be served via 3D image map services systems on the Internet. As it was necessary to consider intended use and display scale when building 3D image models, in this study, we applied the concept of LoD(Level of Detail) to define 3D image model of buildings in five levels and established the models by following the levels.

Potential Effects of Land-Use Change on the Local climete (토지이용 변화가 국지기후에 미치는 영향)

  • 이현영
    • Korean Journal of Remote Sensing
    • /
    • v.11 no.3
    • /
    • pp.83-100
    • /
    • 1995
  • The land-use has changed rapidly during the last two decades in accordance with urbanization in the Seoul Metropolitan Region. As a result of these changes, the local climate has undergone changes as well. This study intends to define the land-use changes, and then to show how they have brought in significant changes in the local climates. Land-use changes in the study area so repidly that up-to date maps and documents are not available at present. Therefore, Landsat data for land-use classification and NOAA AVHRR thermal data for the temperature fields were analyzed. Additionary, to visualize the effect of the land-use on the local climate, computer-enhanced brightness temperatures, Green Belt and city boundaries were overlaid on land-use patterns obtained from satellite images using GIS techniques. The results of analysis demonstrate that Green Space in the Seoul Metropolitan Region decreased from 94% to 62% while urban land-use increased ten times, from 4% to 39% for the period of 1972-1992. The resulting disappearance of biomass caused by land-use changes may have implications for the local-and micro-climate. The results show that the local climate of the study area became drier and warmer. This study also suggests a need for further studies of man's effects on local climate to minimize adverse influences and hazardous pollution and efficacious ways for urban planning.

Design of Immersive Walking Interaction Using Deep Learning for Virtual Reality Experience Environment of Visually Impaired People (시각 장애인 가상현실 체험 환경을 위한 딥러닝을 활용한 몰입형 보행 상호작용 설계)

  • Oh, Jiseok;Bong, Changyun;Kim, Jinmo
    • Journal of the Korea Computer Graphics Society
    • /
    • v.25 no.3
    • /
    • pp.11-20
    • /
    • 2019
  • In this study, a novel virtual reality (VR) experience environment is proposed for enabling walking adaptation of visually impaired people. The core of proposed VR environment is based on immersive walking interactions and deep learning based braille blocks recognition. To provide a realistic walking experience from the perspective of visually impaired people, a tracker-based walking process is designed for determining the walking state by detecting marching in place, and a controller-based VR white cane is developed that serves as the walking assistance tool for visually impaired people. Additionally, a learning model is developed for conducting comprehensive decision-making by recognizing and responding to braille blocks situated on roads that are followed during the course of directions provided by the VR white cane. Based on the same, a VR application comprising an outdoor urban environment is designed for analyzing the VR walking environment experience. An experimental survey and performance analysis were also conducted for the participants. Obtained results corroborate that the proposed VR walking environment provides a presence of high-level walking experience from the perspective of visually impaired people. Furthermore, the results verify that the proposed learning algorithm and process can recognize braille blocks situated on sidewalks and roadways with high accuracy.