• Title/Summary/Keyword: 도시열섬효과

Search Result 79, Processing Time 0.026 seconds

Reduction in Indoor and Outdoor Temperature of Office Building with Cool Roof (쿨루프 적용에 따른 업무용 건물의 내·외부 온도 저감 효과)

  • Song, Bong-Geun;Kim, Gyeong-Ah;Park, Kyung-Hun
    • KIEAE Journal
    • /
    • v.16 no.6
    • /
    • pp.95-101
    • /
    • 2016
  • Purpose: This study aims to identify the effect of temperature reduction by the application of cool roof coatings to Changwon City Hall in South Gyeongsang Province. The indoor and outdoor temperatures of the cool roofing building were analyzed and compared to that of an existing building with green-colored roof coated with waterproof polyurethane. Method: The surface temperatures and reflectivity of rooftops, surface temperatures of ceilings and the interior, and outdoor temperature and humidity of the two aforementioned buildings were measured from June to September in 2014. The measurements were taken every 10 min. Result: The surface temperature of the building with the cool roof was lower by a maximum of $9^{\circ}C$ with the reflectivity of the rooftop at an average of 0.55, which is higher than that of the building with green polyurethane by approximately 0.3. The temperature of the ceiling inside the building with the cool roof was about $1{\sim}2^{\circ}C$ lower than that of the ordinary building. Also, the indoor temperature of the office with cool roof coatings was about $0.5{\sim}1.0^{\circ}C$ lower than that of the office with green-colored roofing building. The results show that cool roof coatings can lower the temperature of buildings. In the next research, the reduction in consumption of energy for air conditioning will be investigated by utilizing building energy simulation tools.

Analysis of Microclimate Impact According to Development Scenarios of Vacant Land in Downtown Seoul - A Comparison of Wind Speed and Air Temperature - (서울 도심 공지의 개발 시나리오에 따른 미기후 영향 분석 - 풍속 및 기온 비교 -)

  • Baek, Jiwon;Park, Chan;Park, Somin;Choi, Jaeyeon;Song, Wonkyong;Kang, Dain;Kim, Suryeon
    • Journal of Environmental Impact Assessment
    • /
    • v.30 no.2
    • /
    • pp.105-116
    • /
    • 2021
  • In the city of high population density crowded with buildings, Urban Heat Island (UHI) is intensified, and the city is vulnerable to thermal comfort. The maintenance of vacant land in downtown is treated as a factor that undermines the residential environment, spoils the urban landscape, and decreases the economic vitality of the whole region. Therefore, this study compared the effects on microclimate in the surrounding area according to the development scenarios targeting the vacant land in Songhyeon-dong, Jongno-gu, Seoul. The status quo, green oriented, building oriented and green-building mediation scenarios were established and ENVI-met was used to compare and analyze the impact of changes in wind speed, air temperature and mean radiant temperature (MRT) within 1 km of the target and the target site. The result of inside and 1 km radius the targeted area showed that the seasonal average temperature decreased and the wind speed increased when the green oriented scenario was compared with the current state one. It was expected that the temperature lowered to -0.73 ℃ or increased to 1.5 ℃ in summer, and the wind speed was affected up to 210 meters depending on the scenario. And it was revealed that green area inside the site generally affects inside area, but the layout and size of the buildings affect either internal and external area. This study is expected to help as a decision-making support tool for developing Songhyeon-dong area and to be used to reflect the part related to microclimate on the future environmental effects evaluation system.

Assessment of Temperature Reduction and Heat Budget of Extensive Modular Green Roof System (경량모듈형 옥상녹화시스템의 온도저감 및 열수지 평가)

  • Kim, Se-Chang;Park, Bong-Ju
    • Horticultural Science & Technology
    • /
    • v.31 no.4
    • /
    • pp.503-511
    • /
    • 2013
  • The purpose of this study was to evaluate temperature reduction and heat budget of extensive modular green roof planted with Sedum sarmentosum and Zoysia japonica. Plant height and green coverage were measured as plant growth. Temperature, net radiation and evapotranspiration of concrete surface, green roof surface, in-soil and bottom were measured from August 2 to August 3, 2012 (48 hours). On 3 P.M., August 3, 2012, when air temperature was the highest ($34.6^{\circ}C$), concrete surface temperature was highest ($57.5^{\circ}C$), followed by surface temperature of Sedum sarmentosum ($40.1^{\circ}C$) and Zoysia japonica ($38.3^{\circ}C$), which proved temperature reduction effect of green roof. Temperature reduction effect of green roof was also shown inside green roof soil, and bottom of green roof. It was found that Zoysia japonica was more effective in temperature reduction than Sedum sarmentosum. Compared with the case of concrete surface, the highest temperature of green roof surface was observed approximately 2 hours delayed. Plant species, temperature and soil moisture were found to have impact on surface temperature reduction. Plant species, air temperature, soil moisture and green roof surface temperature were found to have impact on temperature reduction in green roof bottom. As results of heat budget analysis, sensible heat was highest on concrete surface and was found to be reduced by green roof. Latent heat flux of Zoysia japonica was higher than that of Sedum sarmentosum, which implied that Zoysia japonica was more effective to improve thermal environment for green roof than Sedum sarmentosum.

A Study on Air Temperature Reduction Effect and the Functional Improvement of Street Green Areas in Seoul, Korea (서울 도심 가로수 및 가로녹지의 기온 저감 효과와 기능 향상 연구)

  • Jung, Hee-Eun;Han, Bong-Ho;Kwak, Jeong-In
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.43 no.4
    • /
    • pp.37-49
    • /
    • 2015
  • The goal of this research is to examine air temperature changes according to tree type, plantation type, roadside green area structure, and green volume of street green area within a city. The plantation type that could be analyzed for comparison by tree type with over 3 species was 1 rows of tree+shrubs. The results of analysis of average air temperature difference between pedestrian and car streets vis-a-vis 1 row of tree+shrub in high air temperature areas were: Pinus densiflora, $1.35^{\circ}C$; Zelkova serrata, $1.84^{\circ}C$; Ginkgo biloba, $2.00^{\circ}C$; Platanus occidentalis, $2.57^{\circ}C$. This standard large wide canopy species was analyzed by the roadside to provide shade to have a significant impact on air temperature reduction. In terms of analysis of the relationship between plantation type of roadside trees and air temperature, the average air temperature difference for 1 row of tree type was $1.80^{\circ}C$; for 2 rows of trees it was $2.15^{\circ}C$. In terms of analysis of the relationship between the roadside green area structure and air temperature, for tree type, average air temperature $1.94^{\circ}C$: for tree+shrub type, average air temperature $2.49^{\circ}C$; for tree+mid-size tree+shrub type, average air temperature $2.57^{\circ}C$. That is, air temperature reduction was more effective in a multi-layer structure than a single layer structure. In the relationship analysis of green volume and air temperature reduction, the air temperature reduction effect was enlarged as there was a large amount of green volume. There was a relationship with the green volume of the road, the size of the tree and number of tree layers and a multi-layer structured form of planting. The canopy volume was large and there were a great number of rows of the tree layer and the plantation type of multi-layer structure, which is what is meant through a relationship with the green volume along the roadside. Green composition standards for air temperature reduction effects and functional improvement were proposed based on the result. For a pedestrian street width of 3m or less in the field being ideal, deciduous broadleaf trees in which the canopy volume is small and the structure of the tree+shrub type through the greatest 1m green bend were proposed. For a pedestrian street width of over 3m, deciduous broadleaf trees in which the canopy volume is large and is multi-layer planted with green bend over 1m, tree+mid-size tree+shrub type was proposed.

An Economic Value for the First Precipitation Event during Changma Period (장마철 첫 강수의 경제적 가치)

  • Seo, Kyong-Hwan;Choi, Jin-Ho
    • Atmosphere
    • /
    • v.32 no.1
    • /
    • pp.61-70
    • /
    • 2022
  • This study evaluates the economic values for the several first precipitation events during Changma period. The selected three years are 2015, 2019, and 2020, where average precipitation amounts across the 58 Korean stations are 12.8, 20.1 and 13.3 mm, respectively. The four categories are used to assess the values including air quality improvement, water resource acquisition/accumulation, drought mitigation, and forest fire prevention/recovery. Economic values for these three years are estimated 50~150 billion won. Among the four factors considered, the effect of air quality improvement is most highly valued, amounting to 70 to 90% of the total economic values. Wet decomposition of air pollution (PM10, NO2, CO, and SO2) is the primary reason. The next valuable element is water resource acquisition, which is estimated 9~15 billion won. Effects of drought mitigation and fire prevention are deemed relatively small. This study is the first to estimate the value of the precipitation events during Changma onset. An analysis for more Changma years will be performed to achieve a more reliable estimate.

An Analysis of the Effect of Reducing Temperature and Fine Dust in the Roadside Tree Planting Scenario (가로수 식재 시나리오에 따른 기온 및 미세먼지 저감 효과 분석)

  • Jeong-Hee EUM;Jin-Kyu MIN;Ju-Hyun PARK;Jeong-Min SON;Hong-Duck SOU;Jeong-Hak OH
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.26 no.2
    • /
    • pp.68-81
    • /
    • 2023
  • This study aims to establish a scenario based on the spacing and arrangement of the roadside trees to reduce heat waves and fine dust in cities that occurred during the urbanization process and to quantitatively analyze the degree of reduction. The ENVI-met 5.0.2v model, a micro-climate simulation program, was used to analyze the degree of improvement in the thermal environment and fine dust according to the roadside tree scenario. As a result of temperature analysis according to street tree spacing, the narrower the distance between roadside trees, the lower the temperature during the day as the number of planted trees increased, and a similar pattern was shown regardless of the distance between roadside trees in the morning and evening. In the case of fine dust emitted from the road, the concentration of fine dust increased slightly due to the increase in roadside trees, but the concentration of sidewalks where people walk increased slightly or there was no difference because of blocking fine dust on trees. The temperature according to the arrangement of street trees tended to decrease as the number of planted trees increased as the arrangement increased. However, not only the amount of trees but also the crown projected area was judged to have a significant impact on the temperature reduction because the temperature reduction was greater in the scenario of planting the same amount of trees and widening the interval of arrangement. In terms of the arrangement, the fine dust concentration showed a difference from the results according to the interval, suggesting that the fine dust concentration may change depending on the relationship between the main wind direction and the tree planting direction. By quantitatively analyzing the degree of thermal environment and fine dust improvement caused by roadside trees, this study is expected to promote policies and projects to improve the roadside environment efficiently, such as a basic plan for roadside trees and a project for wind corridor forests.

Classification of Wind Corridor for Utilizing Heat Deficit of the Cold-Air Layer - A Case Study of the Daegu Metropolitan City - (냉각에너지를 활용한 바람길 구성요소 분류 - 대구광역시를 사례로 -)

  • Sung, Uk-Je;Eum, Jeong-Hee
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.5
    • /
    • pp.70-83
    • /
    • 2023
  • Recently, the Korea Forest Service has implemented a planning project about wind corridor forests as a response measure to climate change. Based on this, research on wind corridors has been underway. For the creation of wind corridor forests, a preliminary evaluation of the wind corridor function is necessary. However, currently, there is no evaluation index to directly evaluate and spatially distinguish the types of wind corridors, and analysis is being performed based on indirect indicators. Therefore, this study proposed a method to evaluate and classify wind corridors by utilizing heat deficit analysis as an evaluation index for cold air generation. Heat deficit was analyzed using a cold air analysis model called Kaltluftabflussmodell_21 (KLAM_21). According to the results of the simulation analysis, the wind path was functionally classified. The top 5% were classified as cold-air generating Areas (CGA), and the bottom 5% as cold-air vulnerable Areas (CVA). In addition, the cold-air flowing Areas (CFA) were classified by identifying the flow of cold air moving from the cold air generation area. It is expected that the methodology of this study can be utilized as an evaluation method for the effectiveness of wind corridors. It is also anticipated to be used as an evaluation index to be presented in the selection of wind corridor forest sites.

Analysis of Spatial Correlation between Surface Temperature and Absorbed Solar Radiation Using Drone - Focusing on Cool Roof Performance - (드론을 활용한 지표온도와 흡수일사 간 공간적 상관관계 분석 - 쿨루프 효과 분석을 중심으로 -)

  • Cho, Young-Il;Yoon, Donghyeon;Lee, Moung-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_2
    • /
    • pp.1607-1622
    • /
    • 2022
  • The purpose of this study is to determine the actual performance of cool roof in preventing absorbed solar radiation. The spatial correlation between surface temperature and absorbed solar radiation is the method by which the performance of a cool roof can be understood and evaluated. The research area of this study is the vicinity of Jangyu Mugye-dong, Gimhae-si, Gyeongsangnam-do, where an actual cool roof is applied. FLIR Vue Pro R thermal infrared sensor, Micasense Red-Edge multi-spectral sensor and DJI H20T visible spectral sensor was used for aerial photography, with attached to the drone DJI Matrice 300 RTK. To perform the spatial correlation analysis, thermal infrared orthomosaics, absorbed solar radiation distribution maps were constructed, and land cover features of roof were extracted based on the drone aerial photographs. The temporal scope of this research ranged over 9 points of time at intervals of about 1 hour and 30 minutes from 7:15 to 19:15 on July 27, 2021. The correlation coefficient values of 0.550 for the normal roof and 0.387 for the cool roof were obtained on a daily average basis. However, at 11:30 and 13:00, when the Solar altitude was high on the date of analysis, the difference in correlation coefficient values between the normal roof and the cool roof was 0.022, 0.024, showing similar correlations. In other time series, the values of the correlation coefficient of the normal roof are about 0.1 higher than that of the cool roof. This study assessed and evaluated the potential of an actual cool roof to prevent solar radiation heating a rooftop through correlation comparison with a normal roof, which serves as a control group, by using high-resolution drone images. The results of this research can be used as reference data when local governments or communities seek to adopt strategies to eliminate the phenomenon of urban heat islands.

Properties of Temperature Reduction of Cooling Asphalt Pavements Using High-Reflectivity Paints (고반사 도료를 사용한 차열성 아스팔트 도로포장의 온도저감특성)

  • Hong, Chang Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.317-327
    • /
    • 2013
  • Air pollution and artificial heat of urban areas have caused the urban heat island in which asphalt pavements absorb solar heat during the daytime and release the heat at night. Hence, in order to improve the environment of urban areas, it is necessary to examine cooling pavements that can reduce heat on road pavements in urban areas. The application of temperature insulation paints on road pavements require to reduce black brightness for visibility, to increase the reflection rate of infrared light and minimize the reflection rate of visible light. In the study, one part of Acrylic-emulsion was used as a main binder, and the changes in black brightness and the changes of addition ratio (0%, 15%, 30%) of hollow ceramics, as well as kinds of paints (carbon black pigment, mixed mineral pigment) were selected as the main experimental factors. The performance of temperature reduction of cooling pavements was analyzed through the reflection rate of spectrum, the reflection rate of solar heat, and the lamp test. Abrasion resistance, UV accelerated weather resistance, and sliding resistance were tested in real situations. In addition, the performance of heat reduction of testing pavements covered with high-reflection paints was analyzed by using an infrared camera. As the test results, when using mixed mineral paints and hollow ceramic of 30%, the reflection rate of spectrum was 43% in the area of near-infrared ray and 17% in the area of visible light at black brightness of $L^*$=42.89 and the reflection rate of solar heat was 27.5%. Total color difference was ${\Delta}E$=0.27 in the test of UV Accelerated Weather Resistance, indicating almost no changes in color. BPN was more than 53 when scattering #2 and #4 silica sand of more than $0.12kg/m^2$. In Taber's abrasion resistance test, abrasion loss was up to 86.4mg at 500 rotations. The performance of heat reduction was evaluated using an infrared camera at the test section applying high-reflection paints to asphalt pavements, in which the results showed that the temperature was reduced by $12.7^{\circ}C$ on CI-30-40 cooling pavements ($L^*$=38.76) and by $14.2^{\circ}C$ on CI-30-60 cooling pavements ($L^*$=57.12).