• 제목/요약/키워드: 도로추출

검색결과 674건 처리시간 0.019초

위성영상에서 도로 추출을 위한 히스토그램 기반 경계선 추출자 (Histogram-based road border line extractor for road extraction from satellite imagery)

  • 이동훈;김종화;최흥문
    • 대한전자공학회논문지SP
    • /
    • 제44권5호
    • /
    • pp.28-34
    • /
    • 2007
  • 위성 영상에서 도로를 효과적으로 추출하기 위한 히스토그램 기반 도로 경계선 추출자를 제안하였다. 제안한 추출자를 이용해 도로 경계선 양측의 도로와 비도로 영역 각 화소의 방향성 히스토그램 차를 계산하고, 그 에지 강도 맵을 구하여 도로의 경계선을 추출하였다. 그리고 원영상과 분할된 도로 군집 영상의 에지 강도 맵을 계층적으로 구하여 직선 도로와 곡선 도로를 추출한 다음, 도로의 연결성을 기반으로 하여 전체 도로망을 구성하였다. 제안한 추출자는 칼라 유사도를 계산하는 기존 방법과 달리 히스토그램 차를 기반으로 하기 때문에 잡영에 강건하게 도로를 추출할 수 있으며, 도로 경계선의 위치와 도로 폭도 함께 추출할 수 있을 뿐만 아니라 도로군집을 자동식별하기 때문에 다양한 분광특성의 도로들도 쉽게 추출할 수 있다. 제안한 추출자를 이용하여 1m의 공간 해상도를 갖는 IKONOS 위성 영상에 대해 실험하여 잡영에 강건하게 도로가 추출됨을 확인하였고, 직선 도로 뿐만 아니라 곡선도로 추출도 용이함을 확인하였다.

LiDAR 데이터를 이용한 차량정보 추출에 관한 연구 (A Study on the extraction of vehicle information using LiDAR data)

  • 권승준
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2009년도 춘계학술대회 논문집
    • /
    • pp.350-353
    • /
    • 2009
  • 본 논문에서는 국토모니터링 기술의 한 부분으로서 도로 지역에 대한 효율적인 실시간 교통모니터링을 위해 도로상의 차량 정보를 LiDAR 데이터로부터 취득하는 과정을 실험하였다. 도로영역의 데이터를 추출하기 위해서 좌표 변환된 수치지도와 LiDAR 데이터를 이용하였고, 국지적 임계치 필터링을 사용하여 추출된 도로영역의 데이터를 차량과 도로의 자료로 분리시키는 작업을 수행하였으며, 추출된 차량의 포인트들을 이용하여 차량을 표현할 수 있는 기본 속성값을 추출하였다. 마지막으로, 분리된 차량의 포인트에 대해서 MDC(Minimum Distance Classification) 클러스터링를 이용하여 차량의 종류를 분류하였다. 결과적으로 본 연구를 통하여 차량인식과 차량의 종류에 대한 분류를 수행할 수 있음을 확인하였다.

  • PDF

객체기반 도로모델을 이용한 고해상도 위성영상에서의 도로 추출 (Road Extraction from High Resolution Satellite Image Using Object-based Road Model)

  • 변영기;한유경;채태병
    • 대한원격탐사학회지
    • /
    • 제27권4호
    • /
    • pp.421-433
    • /
    • 2011
  • 도시 정보시스템 및 위치기반 서비스와 같은 공간정보 분야의 빠른 성장으로 인해 도심지 도로정보 취득 및 갱신에 대한 중요성이 날로 증가하고 있다. 본 연구에서는 고해상도 위성영상으로부터 도로 정보를 추출하기 위하여 최근 화소기반분석의 대안으로 주목을 받고 있는 객체기반 접근법을 이용한 자동 도로추출 방법을 제안한다. 이를 위해 우선 MSRG(Modified Seeded Region Growing)기법을 이용하여 공간객체를 생성한 후, 객체의 형상 특정정보와 인접성을 기반으로 핵심 도로 객체를 자동으로 추출하였다. 또한 추출된 핵심도로 객체와 인접한 객체들과의 공간적 상관성을 이용하여 일부 누락된 도로객체를 추적하였다. 최종적으로 도로의 기하학적인 특성을 이용한 단절된 도로 구간 연결 및 도로 변형 개선 과정을 통하여 최종도로영역을 추출하였다. 제안 기법의 성능 검증을 위한 정량적 평가 결과, 도로영역에 대해 높은 탐지정확도를 보임을 확인하였다. 결과적으로 제안된 방법은 고해상도 위성영상의 도로추출에 유용하게 적용될 수 있으리라 판단된다.

차로분리선을 이용한 도시지역 도로의 반자동 추출 (Semi-Automatic Urban Road Extraction using Lane Separation Line)

  • 양성철;한동엽;김민석;김용일
    • 한국지형공간정보학회:학술대회논문집
    • /
    • 한국지형공간정보학회 2003년도 창립 10주년 기념 국제학술대회 논문집
    • /
    • pp.163-168
    • /
    • 2003
  • 급속한 도시화와 교통 수요의 증가로 인해 각종 도로 정보가 빠르게 변화하고 있어 이에 대한 정보들의 추출, 수정 또는 보완의 중요성이 커지고 있다. 도로 정보 및 도로 파손 상태 정보를 이용하면 도로를 효율적이고 경제적으로 유자 관리할 수 있고, 수치지도 및 GIS 분석의 입력자료로서 사용될 수 있다. 본 연구에서는 분당지역의 항공사진을 이용하여 반자동으로 도로를 추출하였다. 항공사진에 탑햇 필터(top-hat filter)를 적용하고 적절한 임계값을 설정하여 후보 개체를 선택하고 모양 유사성을 고려하여 차로분리선만을 선택함으로써 효율적으로 차로분리선을 추출하였다. 추출된 차로분리선을 연결하고 중심선을 구함으로써 도심지역의 도로를 추출할 수 있었다.

  • PDF

고해상도 영상에서 도시내의 직각도로추출 (Extraction of Regular Roads from High Resolution Urban Imagery)

  • 조동민;박찬용;박은철;최준수;한광수;김천;이상무
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2001년도 춘계 학술대회 논문집 통권 4호 Proceedings of the 2001 KSRS Spring Meeting
    • /
    • pp.3-8
    • /
    • 2001
  • 인공위성 영상이나 항공영상에서 도로를 추출하는 시스템을 구현하는 연구는 지난 20년 동안 많이 진행되어 왔다. 본 논문은 해상도가 1m-2m 정도되는 도시영상에서 직각으로 구성된 도로를 추출하는 시스템의 구현에 관한 것이다. 도시영상에서는 도시내의 가로수나 건물들이 도로를 가리게 되고, 또한 높은 건물의 그림자에 의하여 도로의 많은 부분이 가려지게 되는데, 이러한 경우에 고로를 추출할 수 있는 기법에 대하여 기술한다. 또한 도로상의 중앙 분리선이나 차선 분리선은 건물의 외곽선에 비하여 매우 약하게 나타나므로 영상에서 상대적으로 약하게 나타나는 이러한 도로의 표식을 검출하여 도로를 추출하는 기법에 대하여서도 기술한다.

  • PDF

평균이동분할과 연결요소를 이용한 도로추출 알고리즘 (A Road Extraction Algorithm using Mean-Shift Segmentation and Connected-Component)

  • 이태희;황보현;윤종호;박병수;최명렬
    • 디지털융복합연구
    • /
    • 제12권1호
    • /
    • pp.359-364
    • /
    • 2014
  • 본 논문은 평균이동방법과 연결요소방법을 이용하여 도로 영역을 추출하는 알고리즘을 제안하였다. 평균 이동 방법은 중심 모드를 찾기 위한 비모수적 통계 방법으로 컬러 영상을 분할하는데 효율적이다. 일반적으로, 영상의 중 하단에 위치하는 정보를 활용하여 도로의 특징점이 추출된다. 이 특징점과 분할된 컬러 영상을 이용하면, 도로의 영역을 추출할 수 있다. 그러나, 도로의 위치정보와 색상정보만으로 도로영역을 추출할 경우, 잡음과 도로 이외의 영역까지 추출되는 단점이 있다. 본 논문에서는 모폴로지 열기 닫기 연산을 이용하여 잡음을 제거하고, 연결요소 방법을 통하여 가장 큰 영역의 부분만을 추출하여 도로 영역으로 결정하는 방법을 제안한다. 제안된 방법은 실험을 통하여 잡음 제거와 보다 정확한 도로 검출됨을 검증한다.

고립 연결-성분의 방향성 인지에 의한 도로 영역 추출 (Road Extraction by the Orientation Perception of the Isolated Connected-Components)

  • 이우범
    • 한국인터넷방송통신학회논문지
    • /
    • 제12권1호
    • /
    • pp.75-81
    • /
    • 2012
  • 고해상도 위성영상에 내재된 도로 영역의 추출에 있어서 이진화, 잡음 제거, 색처리 등의 전처리 작업에 의해서 추출된 도로 후보 영역에 대한 도로 영역 식별 작업은 가장 중요한 과정이다. 따라서 본 논문에서는 전처리 작업에 의해서 추출된 도로 후보 영역에 대해서 대뇌 시각영역에서 발견되는 신경 세포(Neuron cell)의 방향-선택적 인지 기능을 계산 모델화한 공간필터(Orientation-selective spatial filter)를 적용하여 도로 영역을 식별하는 새로운 방법을 제안한다. 제안하는 방법은 전처리 결과 고립된 연결 성분으로 라벨링 된 각각의 도로후보 영역에 대해서 신경 세포형 방향 필터를 적용한 후, 강한 방향 성분이 인지된 영역을 도로 영역으로 식별한다. 제안한 방법의 성능 평가를 위해서는 위성영상으로부터 추출된 도로 후보 영역에 대해서 도로, 비도로 부류의 혼동 행렬(Confusion matrix)을 이용한 식별 정확 및 오류율을 측정하여 보인다. 실험 결과, 본 논문에서 제안한 방향 선택적 필터 기반의 방법은 추출된 도로 후보 영역에 대해서 92% 이상의 도로 식별 정확성을 보였다.

기대최대화 알고리즘을 활용한 도로노면 training 자료 자동추출에 관한 연구 - 감독분류를 통한 도로 네트워크의 자동추출을 위하여 (Automatic Extraction of Training Dataset Using Expectation Maximization Algorithm - for Automatic Supervised Classification of Road Networks)

  • 한유경;최재완;이재빈;유기윤;김용일
    • 한국측량학회지
    • /
    • 제27권2호
    • /
    • pp.289-297
    • /
    • 2009
  • 본 논문은 감독분류 기법을 활용한 도로 네트워크 추출의 기본 과정인 트레이닝 자료의 추출과정을 자동화함으로써 감독분류를 활용한 도로 네트워크 추출 과정의 자동화에 기여할 수 있는 방법론의 개발을 목적으로 한다. 이를 위해 본 연구에서는 상호 기하보정 된 항공사진과 LIDAR 자료로부터 정사영상과 LIDAR 반사강도 영상을 제작하고, 기 구축된 수치지도를 활용하여 초기 트레이닝 자료를 자동으로 추출하였다. 하지만 위의 과정을 통하여 추출된 초기 트레이닝 자료는 기하보정과정에서 수반되는 기하학적 오차 및 다양한 개체들로 구성된 도로의 특성에 영향을 받아 다양한 분광특성을 포함하게 된다. 따라서 본 연구에서는 추출된 초기 트레이닝 자료에서 도로 추출의 기본이 되는 도로노면의 분광특성을 통계학적 기법인 기대최대화 알고리즘에 기초하여 효과적으로 결정하기 위한 방법론을 제안하였다. 또한 개발된 방법론의 평가를 위하여 동일지역에 대해 수동으로 취득한 트레이닝 자료와 본 연구에서 자동으로 추출한 자료를 비교 평가하여 정확도를 분석하였다. 실험결과에 대한 통계검증결과 본 논문에서 제안한 도로노면 트레이닝 자료 자동추출기법의 효용성을 증명하였다.

그림자영향 소거를 통한 아스팔트 도로 경계추출에 관한 연구 (A Study on the Asphalt Road Boundary Extraction Using Shadow Effect Removal)

  • 윤공현
    • 대한원격탐사학회지
    • /
    • 제22권2호
    • /
    • pp.123-129
    • /
    • 2006
  • 고해상도 컬러항공영상은 공간정보생성을 위한 지형의 상세한 정량적 및 정성적 정보를 제공해준다. 하지만 도심지역에서 빌딩 또는 숲에 의한 그림자의 발생으로 인하여 지물 추출 및 분류시 부정확한 결과를 초래 시킬 수 있다. 현재까지 그림자 효과에 대한 여러 연구가 이뤄졌으나 도심지에서 그림자의 발생으로 야기된 분광정보 왜곡의 문제점을 해결하여 도로추출에 대한 연구가 매우 부족한 실정이다 본 연구에서는 컬러항공사진과 LIDAR(LIght Detection and Ranging) 고도 자료를 이용하여 아스팔트 도로 경계선을 추출하는 기법을 제안하였다. 구체적으로 그림자 영향의 제거를 통한 아스팔트 도로 경계선의 추출과정은 다음과 같다. 첫 번째, 항공사진에서 그림자 영역을 LIDAR자료부터 생성된 DSM(Digital Surface Model)과 태양각으로부터 추출하였다. 그 후 도로영역추출기법, 경계선 검출기법을 통하여 도로의 경계를 추출하였으며 이 자료를 벡터화하므로서 GIS벡터의 선분 자료로 생성하였다. 본 연구의 실험결과 제안된 방법은 그림자의 영향을 소거하여 원활한 아스팔트 도로의 경계를 추출하는데 있어서 효과적임을 알 수 있었다.

라이다데이터와 수치지도를 이용한 도로의 3차원 모델링 (3D Road Modeling using LIDAR Data and a Digital Map)

  • 김성준;이임평
    • 한국측량학회지
    • /
    • 제26권2호
    • /
    • pp.165-173
    • /
    • 2008
  • 본 연구는 라이다데이터와 수치지도를 이용하여 도로의 3차원 기하모델을 자동으로 생성하는 것을 목표로 한다. 도로모델을 생성하는 주요 과정은 (1) 수치지도의 도로경계 레이어를 이용하여 도로영역을 나타내는 다각형을 생성하고, (2) 다각형을 이용하여 도로영역내의 라이다 점을 추출하고, (3) 점을 표면패치로 분할하고, 표면패치를 그룹화 하여 다시 표면패치집단으로 구성하고, (4) 도로표면패치집단을 식별하고 여기에 포함된 점을 추출하여, 추출된 점을 이용하여 표면모델을 구성하고, (5) 도로경계선을 수치지도를 이용하여 정제한다. 제안된 방법을 실측데이터에 적용하여 도로의 선형 및 표면정보를 성공적으로 추출할 수 있었다