데이터 품질에 대한 연구는 오랜 기간 동안 수행되어 왔다. 하지만 이러한 데이터 품질관리 연구는 구조적 데이터를 대상으로 하였다. 최근에 디지털혁명 또는 4차산업혁명이 일어나면서 빅데이터에 대한 품질관리가 중요해 지고 있다. 본 논문에서는 기존 논문을 분석하여 빅데이터 품질 유형을 분류하고 비교 분석하였다. 요약하면, 빅데이터 품질 유형은 빅데이터 값, 빅데이터 구조, 빅데이터 품질 프로세스, 빅데이터 가치사슬 단계, 빅데이터 모형 성숙도 등으로 분류할 수 있다. 이러한 비교 연구를 바탕으로 본 논문에서는 새로운 기준을 제시하고자 한다.
대용량의 데이터들로부터 사용자가 인하는 데이터를 찾기 위하여 많은 데이터 마이닝 기술들이 연구되어 실제 응용프로그램에서 많이 적용되고 있다. 이러한 데이터 마이닝 기술들은 시계열 데이터를 이용하는 경우보다 트랜잭션 데이터를 이용하여 유용한 정보를 찾는 경우에 초점이 맞춰져 있다. 본 논문에서는 시계열 데이터를 트랜잭션 데이터로 변환하는 접근방법을 소개한다. 가상 트랜잭션은 서로 상대적으로 근접한 시간에 발생하는 이벤트의 집합이라고 정의하며, 가상 트랜잭션 생성기는 가상 트랜잭션을 생성시 시간윈도우와 이벤트 윈도우 방법을 사용한다. 본 논문의 접근 방법을 사용하여 기존의 트랜잭션 데이터를 이용하는 많은 데이터 마이닝 알고리즘들을 수정 없이 시계열 데이터에 적용하여 유용한 정보를 찾을 수 있다.
본 논문에서는 상거래 환경에서 구매자와 비구매자들에 대한 데이터를 학습한 후, 잠재고객들 중에서 구매 확률이 높은 사람을 예측하는 문제에 효율적으로 접근하기 위해 능동적인 데이터 선택 기법을 이용한다. 실험 데이터는 ColL Challenge 2000에서 얻은 데이터로서, 구매자들의 정보보다 비구매자들의 정보가 더 많기 때문에 상당히 균형이 맞지 않는다. 따라서 모든 데이터를 한꺼번에 학습하는 경우에 성능이 좋지 않다. 본 논문에서는 이러한 불균형 분포를 갖는 실제적인 문제에 있어서 성능이 좋지 않다. 본 논문에서는 이러한 불균형 분포를 갖는 실제적인 문제에 있어서 RBF 기반의 신경망을 가지고 능동 학습을 함으로써 기존의 뱃치학습 보다 예측의 정확도를 향상시킬 수 있음을 보인다.
본 논문에서는 자기조직화 형상지도(Self-organizing Feature Maps)를 사용하여 움직이는 물체에 대해 움직임의 특성을 자동으로 분석하였다. Kohonen Network는 자기조직을 형성하는 unsupervised learning 알고리즘으로서, 이 논문에서는 생태계에서의 데이터를 Patternizing하고, Clustering 하는데 사용한다. 본 논문에서 Kohonen 신경망의 학습에 사용한 데이터는 CCD 카메라로 물고기의 움직임을 추적한 좌표 데이터이며, diazinon 0.1 ppm을 처리한 물고기 점 데이터와 처리하지 않은 점 데이터를 각각 낮.밤 약 10시간동안 수집하여, \circled1처리전 낮 데이터 \circled2처리전 밤 데이터 \circled3처리전 낮 데이터 \circled4처리후 밤 데이터 각각 4개의 group으로 분류한 후, Kohonen Network을 사용하여 물고기의 행동 차이를 분석하였다.
최근 인터넷, 인트라넷과 같은 통신 기술 발전에 따라 거의 모든 시스템이 서로 연결되었고, 사용자들은 손쉽게 정보를 공유할 수 있게 되었다. 따라서 시스템 침입을 통한 데이터의 변형과 인증 받지 않은 접근과 같은 컴퓨터 범죄가 급속도로 증가하고 있다. 그러므로 이러한 컴퓨터 범죄를 막기 위한 침입 탐지 기술 개발은 매우 중요하다. 전통적인 침입 탐지 모델은 단지 네트워크 패킷 데이터만을 사용하고 있으며. 침입탐지 시스템의 성능을 높이기 위해 서로 다른 분류 알고리즘을 결합하는 방법을 사용해왔다. 그러나 이러한 모델은 일반적으로 성능향상에 있어서 제한적이다. 본 논문에서는 침입탐지 시스템의 성능을 개선하기 위해 네트워크 데이터와 시스템 콜 데이터를 융합하는 방법을 제안하였으며. 데이터 융합 모델로서 Multi-Layer Perceptron (MLP)를 사용하였다. 그리고 DARPA 에서 생성한 네트워크 데이터와 본 논문에서 가상으로 생성한 시스템 콜 데이터를 함께 결합하여 모델을 생성 한 뒤 실험을 수행하였다. 본 논문에서의 실험결과로. 단순히 네트워크 데이터만을 사용한 모델에 비해 시스템 콜 데이터를 함께 결합한 모델이 훨씬 더 놓은 인식률을 보인다는 것을 확인할 수 있다
과학기술 문헌을 활용한 계량정보분석에서 학과정보의 활용은 매유 유용하다. 본 논문에서는 한국과학기술인용색인데이터베이스에 등재된 국내 학술지 논문에 출현하는 대학기관 소속 저자의 학과정보를 추출하고 데이터 정제 및 학과유형 분류 처리를 통해 학과정보 데이터셋을 구축하였다. 학과정보 데이터셋을 학습데이터와 검증데이터로 이용하여 딥러닝 기반의 자동분류 모델을 구현하였으며, 모델 성능 평가 결과는 한글 학과정보 기준 98.6%와 영문 학과정보 기준 97.6%의 정확률로 측정되었다. 향후 과학기술 분야별 지적관계 분석 및 논문 주제분류 등에 학과정보 자동분류 처리기의 활용이 기대된다.
본 논문에서는 기업 이미지에 타격을 줄 수 있는 부정적인 SNS와 Web 데이터를 빠르게 분석하여 기업 마케팅 전략에 활용할 수 있는 SNS 및 Web 데이터 분석 시스템을 제안한다. 본 논문에서 제안하는 시스템은 SNS 및 Web Data를 수집하는 데이터 수집 모듈(Data Collection Module), 수집된 데이터를 저장하는 HBase 모듈(Hbase Module), 수집된 데이터의 의미 분석을 수행한 후 데이터의 의미를 평가 및 분류하는 데이터 분석 모듈(Data Analysis Module) 그리고 관리자에 의해 요청된 질의어에 따라 기업과 관련된 SNS와 Web데이터를 이용하여 최적화된 Map Reduce 과정을 수행하는 PSH 모듈(Priority Scheduling Hadoop Module)로 구성된다. 본 논문은 이런 모듈들을 통하여 SNS와 Web 데이터를 보다 효율적으로 관리하여 이 분석 결과를 기업 마케팅 전략에 활용할 수 있다.
기업의 비즈니스 프로세스를 관리하는 워크플로우 시스템에서 대용량의 비즈니스 업무를 처리하기 위한 워크플로우 시스템을 구성하고자 할 때 중요한 문제 중의 하나는 대량의 데이터 관리의 문제이다. 본 논문에서는 워크플로우 시스템에서 사용되는 데이터 종류들의 특성을 파악 및 분석하여 워크플로우 데이터 중 모델 데이터에 초점을 맞춘다. 논문의 연구를 통하여 워크플로우의 모델 데이터는 변경이 없고 워크플로우 시스템에 자주 참조되는 특성을 고려하여 모델 데이터 관리는 워크플로우 시스템에 높은 성능을 제공할 것으로 예측되어서 본 논문에서는 워크플로우 시스템을 위한 모델 데이터 관리를 위한 시스템을 설계 및 개발한다. 모델 데이터 관리 시스템은 버전 관리, 모델 데이터의 일관성, 동적 변경 등의 중요한 요소를 고려하여 설계 및 개발된다.
GeoSensor 네트워크란 지리공간상에서 발생하는 다양한 현상들을 모니터링하는 특정형태의 센서네트워크 인프라 및 관련 소프트웨어를 의미한다. 그리고 이러한 GeoSensor 네트워크는 데이터스트림과 공간 속성의 데이터를 가진 스트림, 또는 공간 릴레이션과의 조합으로 구현될 수 있다. 하지만, 최근까지 연구된 센서 네트워크 시스템은 공간 정보를 배제한 센서 데이터스트림에 대한 저장 및 검색 방안 연구에 치중되어 있다. 따라서 본 논문은 GeoSensor 네트워크에서 데이터스트림과 공간 데이터가 결합된 형태의 공간 데이터스트림의 정의 및 그들 간의 조인 전략들을 제안한다. 본 논문에서 정의하고 있는 공간 데이터스 트림에는 이동 객체 형태의 동적 공간 데이터스트림과 고정된 형태의 정적 공간 데이터스트림이 있다. 동적공간 데이터스트림은 GPS와 같이 동적으로 이동하는 센서에 의해 전송되는 데이터스트림을 말한다. 반면, 정적 공간 데이터스트림은 일반 센서 형태의 데이터스트림과 이러한 센서들의 위치 값을 가지고 있는 릴레이션과의 조인으로 만들어 진다. 본 논문은 동적 공간 데이터스트림과 정적 공간 데이터스트림의 조인 및 조인 비용을 추정하는 모델을 제안하고 있다. 또한, 실험을 통해 제안하는 비용 모델의 검증 및 조인 전략에 따른 조인 성능을 보이고 있다.
본 연구는 데이터 스칼라십을 이해하기 위하여 데이터 논문으로 색인되는 저널의 지적 구조를 분석 및 시각화하고 데이터 리포지토리의 운영을 비교하였다. 동료 평가(peer review) 유형을 살펴보고, 공동 출현 분석(co-occurence analysis) 및 네트워크 분석(network analysis)을 실시하였다. WoS에 데이터 논문으로 색인되는 상위 10위 저널은 전통적인 유형과 데이터 논문 유형을 혼재해서 발간하고 있었다. DCI에 색인되는 데이터 리포지토리는 대부분 북미 및 유럽 국가에서 운영하고 있다. 국내의 데이터 리포지토리는 대부분 연구원에서 운영하고 있다. 본 연구의 결과는 데이터 저널, 데이터 리포지토리 등 데이터 스칼라십의 관행을 이해하는 데 도움이 되기를 바란다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.