• Title/Summary/Keyword: 데이터 과학 교육

Search Result 452, Processing Time 0.027 seconds

A Study on Elementary Education Examples for Data Science using Entry (엔트리를 활용한 초등 데이터 과학 교육 사례 연구)

  • Hur, Kyeong
    • Journal of The Korean Association of Information Education
    • /
    • v.24 no.5
    • /
    • pp.473-481
    • /
    • 2020
  • Data science starts with small data analysis and includes machine learning and deep learning for big data analysis. Data science is a core area of artificial intelligence technology and should be systematically reflected in the school curriculum. For data science education, The Entry also provides a data analysis tool for elementary education. In a big data analysis, data samples are extracted and analysis results are interpreted through statistical guesses and judgments. In this paper, the big data analysis area that requires statistical knowledge is excluded from the elementary area, and data science education examples focusing on the elementary area are proposed. To this end, the general data science education stage was explained first, and the elementary data science education stage was newly proposed. After that, an example of comparing values of data variables and an example of analyzing correlations between data variables were proposed with public small data provided by Entry, according to the elementary data science education stage. By using these Entry data-analysis examples proposed in this paper, it is possible to provide data science convergence education in elementary school, with given data generated from various subjects. In addition, data science educational materials combined with text, audio and video recognition AI tools can be developed by using the Entry.

A Case Study of the Curriculum of Data Science for Elementary School Teachers (초등교사 대상의 기초 데이터 과학 교육의 사례 연구)

  • Jo, Junghee
    • Journal of The Korean Association of Information Education
    • /
    • v.25 no.6
    • /
    • pp.899-906
    • /
    • 2021
  • Data science is a discipline comprised of the academic fields of statistics, computer science, information technology, and domain knowledge. It analyzes data and derives meaningful results using complex technologies. Data science, along with artificial intelligence, is a core technology of the 4th industrial revolution; consequently, universities and companies worldwide are actively developing programs to develop data scientists who require high levels of expertise. In line with this undertaking, the field of elementary education has recognized the importance of data science education and so various studies have been conducted to develop curricula designed to help students understand how to use data. This paper proposes a curriculum for the purpose of educating elementary school teachers who are mostly non-majors in the computer field about data science. Satisfaction analysis was conducted based on questionnaires collected from students to analyze the effectiveness of the data science education proposed in this paper.

Development and Validation of Data Science Education Instructional Model (데이터 과학 교육을 위한 수업모형 개발 및 타당성 검증)

  • Bongchul Kim;Bomsol Kim;Jonghoon Kim
    • Journal of The Korean Association of Information Education
    • /
    • v.26 no.5
    • /
    • pp.417-425
    • /
    • 2022
  • The 'Comprehensive Plan for Nurturing Digital Talents' reported at the Cabinet meeting of the Ministry of Education in August 2022 focuses on qualitative and quantitative expansion of informatics education centered on SW, AI education. With the advent of the era of artificial intelligence, data science education is also drawing attention as a field of informatics education. Data science is originally a field where various studies are fused, and advanced technologies are being used for data analysis, modeling, and machine learning. This study devised a draft of the instructional model of data science education through literature research and analysis of previous studies, and developed a final instructional model through usability test and expert validation.

Comparison of Epistemic Characteristics of Using Primary and Secondary Data in Inquiries about Noise Conducted by Elementary School Preservice Teachers: Focusing on the Cases of Science Inquiry Reports (소음에 대한 초등 예비교사들의 탐구에서 나타나는 1차 데이터와 2차 데이터 활용의 인식적 특징 비교 - 과학탐구 보고서 사례를 중심으로 -)

  • Chang, Jina;Na, Jiyeon
    • Journal of Korean Elementary Science Education
    • /
    • v.43 no.1
    • /
    • pp.81-94
    • /
    • 2024
  • This study explores and conducts an in-depth comparison of the epistemic characteristics in different data types utilized in the science inquiries of preservice teachers regarding noise as a risk in everyday life. Focusing on primary and secondary data in the context of science inquiries about noise, we examined how these data types differ in science inquires in terms of inquiry design, data collection, and analyses. The findings reveal that sensor-based primary data enable direct measurement and observation of key phenomena. Conversely, secondary data rely on predetermined measurement methods within a public data system. These differences require different epistemic considerations during the inquiry process. Based on these findings, we discuss the educational implications concerning teaching approaches for science inquiries, teacher education for inquiry teaching, and the development of risk response competencies in preparation for the VUCA (Volatility, Uncertainty, Complexity, and Ambiguity) era.

A Study on Development of Basic Data Science Education Contents for Artificial Intelligence Capability (인공지능 기반의 기초 데이터 과학 교육에 관한 연구)

  • Jo, Junghee
    • 한국정보교육학회:학술대회논문집
    • /
    • 2021.08a
    • /
    • pp.393-400
    • /
    • 2021
  • Data science is a scientific discipline that defines problems while finding meaningful information from collected data to solve problems. Along with artificial intelligence technology, the field of data utilization is gradually expanding, and awareness of the importance of data science education is also increasing. Despite the rapid growth of the domestic data industry market, it has recently been predicted that the shortfall of data experts will reach 31.4% within the next 5 years according to an analysis of the current status of the data industry by the Korea Data Agency. In the field of elementary education, various studies have been conducted to introduce data science in order to improve students' computational thinking and creativity. This paper proposed the contents of data science lectures developed for the purpose of educating elementary school teachers, who are mostly non-majors in the computer field. The developed contents were applied to a group of elementary school teachers attending graduate school for artificial intelligence convergence education. Points for improvement were derived by identifying the contents that were difficult for learners to understand and analyzing the causes of difficulty.

  • PDF

Development of a Data Science Education Program for High School Students Taking the High School Credit System (고교학점제 수강 고등학생을 위한 데이터과학교육 프로그램 개발)

  • Semin Kim;SungHee Woo
    • Journal of Practical Engineering Education
    • /
    • v.14 no.3
    • /
    • pp.471-477
    • /
    • 2022
  • In this study, an educational program was developed that allows students who take data science courses in the high school credit system to explore related fields after learning data science education. Accordingly, the existing research and requirements for data science education were analyzed, a learning plan was designed, and an educational program was developed in accordance with a step-by-step educational program. In addition, since there is no research on data science education for the high school credit system in existing studies, the research was conducted in the stages of problem definition, data collection, data preprocessing, data analysis, data visualization, and simulation, and referred to studies on data science education that have been conducted in existing schools. Through this study, it is expected that research on data science education in the high school credit system will become more active.

The Effect of Data Science Education on Elementary School Students' Computational Thinking: Focusing on Micro:bit's Sensor Function (데이터 과학 교육이 초등학생의 컴퓨팅 사고력에 미치는 효과: 마이크로비트의 센서 기능을 중심으로)

  • Kim, Bongchul;Kim, Jaejun;Moon, Woojong;Seo, Youngho;Kim, Jungah;OH, Jeongcheol;Kim, Yongmin;Kim, Jonghoon
    • Journal of The Korean Association of Information Education
    • /
    • v.25 no.2
    • /
    • pp.337-346
    • /
    • 2021
  • Despite the increasing rate of use of data science in various fields of society, research on data science education programs is relatively inadequate. In this study, a data science education program for elementary school students was developed and its effectiveness was verified. We created a program that collects data using microbit, one of the physical computing tools, and developed an education program that performs the data science stage of analyzing the collected data to derive results. A study was conducted on 10 students enrolled in the Information Gifted Program at 00 University, and pre- and post-tests of computing thinking skills were conducted to verify the effectiveness. As a result, it was found that the data science education program developed through this study has a significant effect on improving the computational thinking of elementary school students.

Development of the Liberal Arts Course for Informatics, Mathematics, and Science Convergence Education using No Code Data Analysis Tool (노 코드 데이터 분석 도구를 활용한 정보·수학·과학 융합교육 교양 강좌 개발)

  • Soyul Yi;Youngjun Lee
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.01a
    • /
    • pp.447-448
    • /
    • 2023
  • 본 연구에서는 비전공자들을 위한 디지털 교육을 위하여 노 코드 프로그램을 활용한 정보, 수학, 과학 융합교육 교양 강좌를 개발하였다. 노 코드 프로그램으로는 오렌지3 데이터 마이닝을 선정하였는데, 이는 데이터 분석, 시각화, 머신러닝 모델의 활용이 용이하다는 강점을 가지고 있다. 또한, 산업환경 변화에 대비하는 핵심 교과인 과학, 수학, 정보의 중요성과 데이터 분석과의 밀접성을 고려하여 교육 내용을 융합할 수 있도록 선정하였다. 개발된 교육 프로그램은 8인이 전문가 검토 결과 내용 타당도가 확보되었음을 확인할 수 있었다. 추후 연구에서는 이 강좌를 대학의 학부생에게 적용하여 그 효과성을 확인해 보고자 한다.

  • PDF

Development of AI Data Science Education Program to Foster Data Literacy of Elementary School Students (초등학생의 데이터 리터러시 함양을 위한 AI 데이터 과학 교육 프로그램 개발)

  • Hong, Ji-Yeon;Kim, Yungsik
    • Journal of The Korean Association of Information Education
    • /
    • v.24 no.6
    • /
    • pp.633-641
    • /
    • 2020
  • The development of intelligent information technology based on intelligence and data and network technology implemented by artificial intelligence has instigated innovation in society as a whole and has shown wide social and economic impact. Therefore, not only overseas but also in Korea, AI education is in a hurry to cultivate talents who will lead the upcoming society. Data is an important part of artificial intelligence, and data literacy, which can collect, process, and analyze data, to make data-based decisions, can be seen as an important competency to be developed along with AI literacy. Therefore, in this study, an AI data science education program that can increase data literacy of elementary school students was developed and applied to the experimental group, and its effectiveness was verified through a pre- and post response sample t-test. As a result, all of the four detailed competencies of data literacy, data understanding, collection, analysis, and expression, showed statistically significant improvement, indicating that the AI data science education program was effective in improving students' data literacy.

Building a computing infrastructure in the era of data science (데이터과학 시대에 적합한 컴퓨팅 인프라 구축)

  • Sookhee Choi;Kyungsoo Han;Zhe Wang
    • The Korean Journal of Applied Statistics
    • /
    • v.37 no.1
    • /
    • pp.49-59
    • /
    • 2024
  • The popularity of data science, influenced by the trends from the United States around 2010, has significantly impacted the education of various statistics departments at domestic universities. However, it is challenging to find research papers in domestic academic journals that address the efficient teaching of data science topics in relation to computing environment. This article will discuss and propose the establishment of a suitable computing infrastructure for the education and research in statistics and data science departments in domestic universities.