Proceedings of the Korean Information Science Society Conference
/
1999.10a
/
pp.168-170
/
1999
지리정보시스템과 같은 공간 데이터베이스에서 다루는 데이터는 대용량이며, 사용자의 다양한 질의에 따라 빠르게 접근할 수 있어야 한다. 그런데 이때 성능의 대부분이 디스크 접근시간에 의해 영향을 받으므로 접근시간을 줄이는 기술이 필요하다. 이는 다수의 디스크 공간에 데이터를 분산하여 저장하는 디클러스터링 방법을 사용함으로써 효과적인 성능 향상을 기대할 수 있다. 효과적인 디클러스터링 방법은 주어진 질의에 대하여 동시에 접근될 가능성이 있는 공간 객체를 다른 디스크에 각각 저장함으로써 한번에 접근하는 병렬성을 높일 수 있다. 그러나 하나의 디스크에게 할당 가능한 공간 객체들을 서로 다른 디스크에 할당하는 것은 오히려 성능의 저하를 초래할 수 있다. 이러한 두 가지 조건을 동시에 만족하기 위해서는 공간 객체들을 클러스터링 한 후, 크러러스터 단위로 디스크로 할당하는 것이 효과적이다. 이전에 제시된 디클러스터링 방법들은 이러한 요소를 고려하지 않았다. 이에 본 논문에서는 주어진 공간 객체들에 대해서 일정한 크기의 클러스터를 만들고 클러스터 단위로 디클러스터링 하여 효율적인 성능 향상을 보이는 새로운 방법에 대해서 제시하고자 한다. 또한 이전에 제시되어졌던 여러 가지 디클러스터링 방법들과의 비교실험을 통해, 본 논문에서 제시한 방법이 가장 효과적인 방법임을 밝히고자 한다.
Intrusion detection system(IDS) has recently evolved while combining signature-based detection approach with anomaly detection approach. Although signature-based IDS tools have been commonly used by utilizing machine learning algorithms, they only detect network intrusions with already known patterns, Ideal IDS tools should always keep the signature database of your detection system up-to-date. The system needs to generate the signatures to detect new possible attacks while monitoring and analyzing incoming network data. In this paper, we propose a new outlier cluster detection algorithm with density (or influence) function, Our method assumes that an outlier is a kind of cluster with similar instances instead of a single object in the context of network intrusion, Through extensive experiments using KDD 1999 Cup Intrusion Detection dataset. we show that the proposed method outperform the conventional outlier detection method using Euclidean distance function, specially when attacks occurs frequently.
A shared disks (SD) cluster couples multiple computing nodes, and every node shares a common database at the disk level. A great deal of research indicates that the SD cluster is suitable to high performance transaction processing, but the aggregation of SD cluster with real-time processing has not been investigated at all. A real-time transaction has not only ACID properties of traditional transactions but also time constraints. By adopting cluster technology, the real-time services will be highly available and can exploit inter-node parallelism. In this paper, we first develop an experiment model of an SD-based real-time database system (SD-RTDBS). Then we investigate the feasibility of real-time transaction processing in the SD cluster using the experiment model. We also evaluate the cross effect of real-time transaction processing algorithms and SD cluster algorithms under a wide variety of database workloads.
Proceedings of the Korean Information Science Society Conference
/
2002.04b
/
pp.193-195
/
2002
최근 근자상거래와 같은 웹 기반 응용프로그램에서는 높은 가용성과 확장성을 가지며 빠른 응답시간을 갖는 데이터베이스에 대한 필요성이 대두되고 있다. 이러한 요구에 대한 해결책의 하나로 비공유 구조의 클러스터 시스템을 구성하고 분활과 복제정책을 사용한다. 즉, 해쉬함수나 범위값에 의해 분할하여 여러 노드에 분산 시키고 서로 다른 노드에 마스터와 백업을 두어 가용성을 높이고 있다. 그러나 기존의 방법은 하나의 갱신 질의에 대해서 마스터와 백업에 각각 질의를 보내주어야 하고 온라인 확장시에는 모든 마스터와 백업의 데이터가 재구성되어야 하므로 네트워크 비용이 크다는 문제점이 있다. 따라서, 본 논문에서는 이러한 네트워크 비용을 줄이기 위한 변형된 분활 기법을 제안한다. 제안된 기법에서 마스터는 기존의 기법과 동일한 방법으로 저장하나 백업은 네트워크를 통해 지정된 노드로 포워딩을 하지 않고 질의를 받은 서버에 그대로 저장함으로써 클러스터를 구성하는 노드 사이에 통신 비용을 줄인다. 또한 온라인 확장에서는 기존의 기법과 달리 백업데이터는 같은 서버의 마스터데이터와 중복되는 것만 이동시킴으로써 데이터 이동비용을 줄이며, 전체 트랜잭션 처리량을 높인다.
A-SMGCS 시스템은 HMI 단말 노드, 외부 시스템 연계 노드, 운영 데이터베이스 노드, 서버 노드 등 여러 노드로 구성되어져 있으며 이 노드들이 협업하여 운영자에게 원활한 서비스를 제공하기 위해서는 최소한의 공유 데이터가 서로 동기화되고 변경 발생 시 해당 노드에 자동으로 통지될 수 있어야 한다. 본 연구에서는A-SMGCS 시스템 운영에 필요한 최소한의 공유 데이터 동기화 및 변경 통지 기능 제공을 위해 협업 미들웨어인 ZooKeeper를 활용하고자 한다. 본 연구를 통해 클러스터를 구성하는 복수개의 ZooKeeper에 공유 데이터를 계층적으로 저장하고 특정 데이터에 변경이 발생할 시 자동으로 A-SMGCS 시스템 노드들에 통지가 됨을 확인하였다. 이러한 기능은 A-SMGCS 시스템뿐만 아니라 시스템 노드 간 신뢰성 있는 공유 데이터 실시간 동기가 필요한 다양한 시스템에도 쉽게 적용이 가능하다.
In this paper, we propose the diagnosis system that can predict pet's state of health for pet lovers lacking a technical knowledge of dog-diseases. The proposed system deduces diseases of dogs from input symptoms by our database constructed with 105 kinds of diseases and symptoms. First, a disease is clustered by ART2, the self-learning method in neural network and secondly, the result values, outputs and the weight values clustered by the algorithm are stored to database. Finally, our system diagnoses the state of health by means of comparing the learned information of diseases with the input vectors of each symptom and the related results of questions on diseases. The correct information of diseases and symptom diagnosing is important to predict the state of health of dogs. Therefore, in this paper, the proposed system can manage symptoms and diseases efficiently by database and ART2. We ask veterinary specialist with the efficiency of our system. As a result, we could confirm the possibility as the auxiliary diagnosis system for dog diseases.
Data mining is defined as the process of discovering meaningful and useful pattern in large volumes of data. In particular, finding associations rules between items in a database of customer transactions has become an important thing. Some data structures and algorithms had been proposed for storing meaningful information compressed from an original database to find frequent itemsets since Apriori algorithm. Though existing method find all association rules, we must have a lot of process to analyze association rules because there are too many rules. In this paper, we propose a new data structure, called a Frequent Pattern Network (FPN), which represents items as vertices and 2-itemsets as edges of the network. In order to utilize FPN, We constitute FPN using item's frequency. And then we use a clustering method to group the vertices on the network into clusters so that the intracluster similarity is maximized and the intercluster similarity is minimized. We generate association rules based on clusters. Our experiments showed accuracy of clustering items on the network using confidence, correlation and edge weight similarity methods. And We generated association rules using clusters and compare traditional and our method. From the results, the confidence similarity had a strong influence than others on the frequent pattern network. And FPN had a flexibility to minimum support value.
Proceedings of the Korea Information Processing Society Conference
/
2014.04a
/
pp.656-659
/
2014
오픈소스로부터 촉발된 분산 시스템의 보편화로 기존 상용 시스템으로는 제공하지 못한 다양한 종류의 서비스가 각광받고 있다. 특히, 테라바이트 단위를 넘어 페타바이트 단위의 데이터를 다루는 서비스의 등장으로 드러난 오픈소스 분산 시스템의 문제를 개선하기 위한 시도가 학계 및 업계에서 다각적으로 이뤄지고 있다. 이러한 시도는 새로운 방법론을 제시하는 것에서부터 기존 분산 데이터베이스 관리 시스템(Distributed DBMS)에서 사용된 방법론들을 적용하는 것까지 다양하게 이뤄지고 있다. 본 논문에서는 특정 키 값(Key Value)에 불균등 분포된 데이터에 대한 조인 연산의 탐색 공간을 밀집 인덱스를 통해 줄여 비교적 높은 시간 복잡도를 완화하는 방법론을 제시하고자 한다.
ArangoDB is a NoSQL database system that has been popularly utilized in many applications for storing large amounts of data. In order to apply a new NoSQL database system such as ArangoDB, to real work environments we need a benchmarking system that can evaluate its performance. In this paper, we design and implement a ArangoDB based benchmarking system that measures a kernel level performance well as an application level performance. We partially modify YCSB to measure the performance of a NoSQL database system in the cluster environment. We also define three real-world workload types by analyzing the existing materials. We prove the feasibility of the proposed system through the benchmarking of three workload types. We derive available workloads in ArangoDB and show that performance at the kernel layer as well as the application layer can be visualized through benchmarking of three workload types. It is expected that applicability and risk reviews will be possible through benchmarking of this system in environments that need to transfer data from the existing database engine to ArangoDB.
For content-based audio retrieval which is one of main functions in audio service, the techniques for extracting fingerprints from the audio source, storing and indexing them in a database are widely used. However, if the fingerprints of new audio sources are continually inserted into the database, there is a problem that space efficiency as well as audio retrieval performance are gradually deteriorated. Therefore, there is a need for techniques to support efficient expansion of audio database without periodic reorganization of the database that would increase the system operation cost. In this paper, we design a content-based audio retrieval system that solves this problem by using MapReduce and NoSQL database in a cluster computing environment based on the Shazam's fingerprinting algorithm, and evaluate its performance through a detailed set of experiments using real world audio data.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.