
Copyright ⓒ 2017 The Digital Contents Society 811 http://www.dcs.or.kr pISSN: 1598-2009 eISSN: 2287-738X

JDCS 디지털콘텐츠학회논문지
Journal of Digital Contents Society
Vol. 18, No. 5, pp. 811-820, Aug. 2017

음원 데이터베이스의 효율적 확장을 지원하는 내용 기반 음원 검색 시스템

박 지 훈1 · 강 현 철2*

1중앙대학교 대학원 컴퓨터공학과
2중앙대학교 컴퓨터공학부

A Content-based Audio Retrieval System Supporting Efficient
Expansion of Audio Database
Ji Hun Park1 · Hyunchul Kang2*

1Department of of Computer Science and Engineering, Graduate School, Chung-Ang University, Seoul 156-756, Korea
2*School of of Computer Science and Engineering, Chung-Ang University, Seoul 156-756, Korea

[요 약]

음원 서비스의 주요 기능 중 하나인 내용 기반 검색을 위해 음원의 지문을 채취하여 데이타베이스에 저장하고 색인하여 검색에

활용하는 기법이 널리 사용되고 있다. 그런데 지속적으로 추가되는 신규 음원의 지문이 기존의 데이타베이스에 계속 삽입되면 공

간 효율 및 음원 검색 성능의 저하가 점차 초래되는 문제점이 있다. 따라서 시스템 운용 비용의 증가를 가져오는 주기적인 데이타

베이스 재구성 없이 효율적인 음원 데이타베이스의 확장을 지원하는 기법이 요구된다. 본 논문에서는 샤잠의 지문 채취 알고리즘

을 기반으로 클러스터 컴퓨팅 환경에서 맵리듀스 및 NoSQL 데이타베이스를 사용하여 이러한 문제를 해결하는 내용 기반 음원 검

색 시스템의 설계를 제시하고 실제 음원 데이터를 이용한 다양한 실험을 통해 그 성능을 평가한다.

[Abstract]

For content-based audio retrieval which is one of main functions in audio service, the techniques for extracting fingerprints
from the audio source, storing and indexing them in a database are widely used. However, if the fingerprints of new audio sources
are continually inserted into the database, there is a problem that space efficiency as well as audio retrieval performance are
gradually deteriorated. Therefore, there is a need for techniques to support efficient expansion of audio database without periodic
reorganization of the database that would increase the system operation cost. In this paper, we design a content-based audio
retrieval system that solves this problem by using MapReduce and NoSQL database in a cluster computing environment based on
the Shazam's fingerprinting algorithm, and evaluate its performance through a detailed set of experiments using real world audio
data.

색인어 : 클러스터 컴퓨팅 환경, 내용 기반 음악 검색 시스템, 디지탈 음원, 맵리듀스, NoSQL 데이타베이스
Key word : Cluster computing environment, Content-based music retrieval system, Digital audio source, MapReduce,
NoSQL database

http://dx.doi.org/10.9728/dcs.2017.18.5.811

This is an Open Access article distributed under
the terms of the Creative Commons Attribution
Non-CommercialLicense(http://creativecommons

.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial
use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Received 14 August 2017; Revised 27 August 2017
Accepted 31 August 2017

*Corresponding Author; Hyunchul Kang

Tel: +82-2-820-5306
E-mail: hckang@cau.ac.kr

디지털콘텐츠학회논문지(J. DCS) Vol. 18, No. 5, pp. 811-820, Aug. 2017

http://dx.doi.org/10.9728/dcs.2017.18.5.811 812

Ⅰ. Introduction

With the advancement of the Internet and communication
technologies, the industry of digital audio services where various
mobile devices such as smart phones are commonly used is
growing in the trend of simultaneous transition of PC to mobile
and download to streaming [1]. In the speech recognition AI
speakers (e.g., Amazon Echo), which are spreading recently due
to the development of Artificial Intelligence technology, the
interoperability with the audio service is one of the key
components.

Much research has been conducted on music information
retrieval and recommendation for audio service. The music
retrieval could be basically based on metadata such as song title,
name of the singer, etc., tag-based which allows music retrieval
possible without knowing the exact information about the music
[2][3], or content-based where the music that matches a sample
query given in the form of an audio clip is retrieved [4][5]. In the
content-based retrieval, one of the widely used approaches is to
extract the fingerprints of the audio sources, store and index them
in a database, and use them for the match with the given audio
sample [6][7]. Since the number of audio sources is vast and the
volume of the fingerprint database is accordingly huge, the
scalability of the audio database is important. To deal with this
issue, the big data processing technologies such as Google's
MapReduce and NoSQL database can be employed [8][9].

In this paper, we have investigated the techniques to construct
and efficiently maintain a fingerprint database for a content-based
audio retrieval system. One of important characteristics in audio
services is that new audio sources are continually added. The
fingerprint data for these would be continually inserted into the
existing database and the database and the index are accordingly
updated. As a side effect, the space utilization efficiency and the
audio retrieval performance are to be gradually degraded. The
most basic method to solve this problem is the periodic
reorganization of the database, but this would increase the system
operation cost. Therefore, some techniques are required whereby
the database expansion due to the addition of new audio sources
could be efficiently conducted. In this paper, we design an audio
retrieval system based on the fingerprinting algorithm of Shazam
[10][11][12], employing MapReduce and a NoSQL database in a
clustered computing environment. We evaluate its performance
through experiments to show that it efficiently supports the
database expansion.

The rest of this paper is organized as follows. In Section 2, we
describe Shazam's algorithm, MapReduce, and NoSQL database
as preliminaries, and then describe the related work on the
fingerprint databases. In Section 3, we first describe the

MapReduce steps for the fingerprint storage and those for the
audio retrieval given an audio sample. Then, we describe NoSQL
database schema designs for fingerprint storage. In Section 4, we
report and analyze the experimental results. Finally, we describe
further research and concludes the paper in Section 5.

Ⅱ. Preliminaries and Related Work

In this section, we first describe Shazam's algorithm,
MapReduce, and NoSQL database as background knowledge of
this paper, and then describe related work on audio fingerprint
databases.

2-1 Shazam's Algorithm

Shazam's algorithm is to extract fingerprints of the audio
source represented in a 2-dimensional space of time and
frequency, and to use them for audio retrieval. The outline of the
technique introduced in [10] is as follows. Fig. 1(a) shows only
four adjacent points P1, P2, P3, and P4 among all the points
representing the time and frequency values of an audio source.
The time and frequency of point Pi are Ti and Fi, respectively,
where the time means the time offset from the beginning of the
audio source to the corresponding point.

When P1 is an anchor point and P2 is a target point, fingerprint
<F1: F2: ∆T12> is extracted between the two points, where ∆T12
denotes the time difference between the two points, i.e., T2 − T1.
Similarly, when P2 is an anchor point and P3 is a target point,
fingerprint <F2: F3: ∆T23> is extracted. When P3 is an anchor point
and P4 is a target point, fingerprint <F3: F4: ∆T34> is extracted.
Given an anchor point, its target zone where several of its
adjacent points are located can be set, and fingerprints can be
extracted for each target point within the target zone. As the
number of fingerprints extracted increases, the accuracy of audio
retrieval would get higher, but the volume of the fingerprint
database and its indices would increase and the maintenance
overhead would increase, too.

 (a) (b)
그림 1. (a) 시간-주파수 2차원 공간 (b) 지문 데이터 3-투플

Fig. 1. (a) 2-Dimensional Space of Time and Frequency
(b) Ternary Tuples of Fingerprint Data

A Content-based Audio Retrieval System Supporting Efficient Expansion of Audio Database

813 http://www.dcs.or.kr

 (a) (b)
그림 2. (a) 오디오 샘플의 시간과 주파수

 (b) 지문 데이터 3-투플

Fig. 2. (a) Time and Frequency of Audio Sample
 (b) Ternary Tuples of Fingerprint Data

In order to make audio retrieval possible, it is necessary to store
in the database not only the fingerprint but its time of the
corresponding anchor point and the identifier of the
corresponding audio source. That is, the data stored in the
database is a ternary tuple of (fingerprint, time, audio identifier).
Let M1 be the identifier of the audio source in Fig. 1(a). Then, the
three ternary tuples of fingerprint data shown in Fig. 1(b) are
stored in the database.

When an audio sample is given as a query, the audio sources
containing it are retrieved as follows. Fingerprints are extracted
by the same Shazam’s algorithm for the audio sample, and a list
of (fingerprint, time) pairs is produced, where time is the time of
the anchor point for the fingerprint. For each fingerprint out of
these (fingerprint, time) pairs, the database is searched for the
(fingerprint, time, audio identifier) tuples whose fingerprint is
matched in order to produce the list of (audio identifier, database
time, sample time) tuples. After these tuples are sorted on the
audio identifier, a list of the (database time, sample time) pairs is
produced for each audio identifier. Suppose this particular audio
source in the database is the one that is matched against the audio
sample. Then, plotting the (database time, sample time) pairs in a
2-dimensional space where x-axis is the database time and y-axis
is the sample time would make a diagonal line. This is because
the interval between adjacent times in the time sequence of the
matched audio source is equal to that of the audio sample.

For example, let us consider an audio sample S composed of
the four points shown in Fig. 2(a). They are the 4 points p1, p2, p3,
p4, respectively, at time t1 = 0, t2, t3, t4 shown in Fig. 2(a). That is,
pi of Fig. 2(a) corresponds to Pi of Fig. 1(a), i = 1, …, 4. If the
same Shazam’s algorithm is applied to the four points of Fig.
2(a), the list of the pairs shown in Fig. 2(b) is produced.

Searching the database with the fingerprints in Fig. 2(b), the
ternary tuples in Fig. 3(a) is produced, because ∆T12 = ∆t12, ∆T23 =
∆t23, ∆T34 = ∆t34. For the audio source M1, plotting the three points

 (a) (b)
그림 3. (a) 데이타베이스 검색으로 생성된 3-투플 (b) 대각선

Fig. 3. (a) Ternary Tuples Produced After Database
Search (b) Diagonal Line

(T1, t1), (T2, t2), (T3, t3) in a 2-dimensional space, a diagonal line
of Fig. 3(b) appears because ∆T12 = ∆t12, ∆T23 = ∆t23, ∆T34 = ∆t34.

2-2 MapReduce

MapReduce is a programming model presented by Google to
process large data sets such as big data in a distributed and
parallel way on a machine cluster [13]. Its open source
implementations such as the one in the Apache Hadoop
framework are widely used [14].

The MapReduce model consists mainly of a map function and
a reduction function. The map function processes the input data to
generate a list of (key, value) pairs. For each key out of the map
functions, the reduce function groups and/or aggregates the list of
its values, producing a list of values as required in the application.
These operations are performed in distributed and parallel
processing at each node of the cluster, and data transmission
occurs between nodes in the process. The complete execution
steps of the MapReduce are as follows: (1) input the data, (2)
map, (3) shuffle the intermediate results of the map step, (4)
reduce, and (5) output the result.

2-3 NoSQL Database

The conventional relational databases are characterized with
the tabular data structure, transaction support with ACID
properties, joins, SQL standard query language, etc. The NoSQL
database features more flexible data structures, simple APIs, and
more relaxed properties than ACID, such as BASE [15], being
distributed in a cluster environment, providing horizontal
scalability, and supporting big data [16].

The development of NoSQL databases has started for the
applications that need to provide Web scale scalability, and its
proof of concept is given through systems like Google's BigTable
[17], Amazon's Dynamo [18], and Memcached [19]. Now, there
are a variety of NoSQL database products, and they can be

디지털콘텐츠학회논문지(J. DCS) Vol. 18, No. 5, pp. 811-820, Aug. 2017

http://dx.doi.org/10.9728/dcs.2017.18.5.811 814

classified on the data model into (1) wide column stores such as
HBase and Cassandra, (2) key-value stores such as DynamoDB
and MemcacheDB, (3) document stores such as MongoDB and
CouchDB, and so on [20].

2-4 Related Work on Audio Fingerprint Database

The representative audio fingerprinting techniques include
Shazam [10], Haitsma and Kalker's technique [21], and Google's
Waveprint [22]. The fingerprints extracted from audio sources
with any of these techniques are to be stored in a database.
Because the number of audio sources is so large and the volume
of fingerprint data is accordingly so large as well, indexing
methods for efficient retrieval are essential [7].

In Haitsma and Kalker's technique [21], a 32-bit-length
sub-fingerprint is extracted from the extracted fingerprint and
used as a unit of search. In order to expedite query processing
with a fingerprint block composed of 256 consecutive
sub-fingerprints, a lookup table that can directly search for a
sub-fingerprint is constructed as an index of the fingerprint
database. The lookup table lists all possible sub-fingerprint values
as its entries, meaning that there are as many as 232 entries. Since
it may not be feasible in terms of memory capacity, the lookup
table can be implemented as a hash table. In [23], techniques are
proposed to improve the retrieval performance using the lookup
table of Haitsma and Kalker’s technique.

Since the number of audio sources provided in an audio service
is large, scalability is important for the fingerprint database.
Scalability could be provided by employing big data processing
technologies. In [8], the techniques to implement the fingerprint
database with the Google’s Waveprint algorithm on the cloud
using Hadoop/MapReduce are presented. In [9], MapReduce is
applied in the process of constructing the fingerprint database
with the Shazam’s algorithm. The proposed MapReduce
generates an indexed-sequential file of fingerprint data for
efficient search.

Ⅲ. System Design

This section describes the design of the content-based audio
retrieval system of this paper. We first describe the MapReduce
steps for storing fingerprint data in the database and for audio
retrieval given an audio sample. Then, we describe the designs of
the NoSQL database schema for storing large volume of
fingerprint data.

3-1 MapReduce Steps

Since processing of large volume of audio data is carried out
on several nodes in a cluster, MapReduce can be effectively
utilized in the operations involved. Such operations include the
followings: (1) Initial load: The bulk load of the fingerprint data
obtained from a large number of initial audio sources into the
database. (2) Additional insert: The insert of the fingerprint data
obtained from additional audio sources into the database. This
operation is executed every time a new set of audio sources is
added for the audio service. (3) Sample search: The search of the
database for retrieving audio sources that match a given audio
sample.
 In [9], the map and reduce steps for preparing the initial load
are presented as follows. The map generates a list of
(fingerprint, <time: audio identifier>) pairs from each audio
file. In other words, the key is fingerprint, and the value is the
combination of time and audio identifier. The reduce generates
a list of <time: audio identifier> composite values for each
fingerprint. In all, the list of these fingerprints and their
corresponding lists of <time: audio identifier> composite values
is to be loaded and indexed in the database. These MapReduce
steps for the initial load can be re-used for the additional insert
as well.

As for the operation of sample search, we design its
MapReduce steps as follows. After a list of (fingerprint, time)
pairs is obtained from the audio sample, the map generates a list
of (audio identifier, <database time: sample time>) pairs by
searching the database with each fingerprint f out of the audio
sample for the composite value <time: audio identifier> of the
ternary tuple in the database whose fingerprint matches f. In
other words, the key is audio identifier while the value is
<database time: sample time>. The reduce generates a list of
<database time: sample time> composite values for each audio
identifier. This list is used to determine if the particular audio
source at hand is a match or not. The results of these map and
reduce steps for the three types of operations are summarized in
Table 1.

표 1. 맵리듀스 단계의 결과

Table. 1. Results of MapReduce Steps
 Operation
 Step

Initial Load &
Additional Insert Sample Search

Map
A list of (fingerprint,

<time: audio
identifier>) pairs

A list of (audio
identifier, <database
time: sample time>)

pairs

Reduce

For each fingerprint,
a list of <time: audio
identifier> composite

values

For each audio
identifier,

a list of <database time:
sample time> composite

values

A Content-based Audio Retrieval System Supporting Efficient Expansion of Audio Database

815 http://www.dcs.or.kr

3-2 NoSQL Database Schema

As described in Section 3.1, there are three types of main
database operations: initial load, additional insert, and sample
search. In audio services, the addition of a new set of audio
sources continues, and the additional inserts are executed
whenever such an event happens. The database is not static.
Rather, it is supposed to be continually updated. In general, a
storage system of a database can effectively perform an initial
allocation of space for storing and indexing data to be
bulk-loaded, thereby achieving very good retrieval performance.
However, this initial space and search efficiency is to be
gradually degraded due to the subsequent database updates.
Eventually, it would suffer from lower space utilization and poor
search performance. When we design a NoSQL schema for the
fingerprint database, we need to consider that the additional
inserts are the update operations with such effects.

In order to prevent the performance degradation in audio
retrieval because of a series of additional inserts, it is necessary to
periodically reorganize the database. However, considering the
number of the audio sources, it takes a lot of time and might incur
formidable cost of system operation. Therefore, a key point to
consider in schema design is the performance trade-off between
insertion of new audio sources and audio retrieval. Different
schema designs are possible depending on whether the insertion
performance is more important or the search performance is more
important. In this paper, we take into account that the frequency
of sample search operations is much higher than that of insert
operations.

As described in Section 2.3, there are a number of NoSQL
database models. In this paper, we consider the NoSQL database
that belongs to the category of a wide column stores, one of
whose original implementations is BigTable developed by Google
[17]. The data in a wide column store can be modeled as
consisting of a row key and multiple column families. Each
column family consists of multiple columns. Column families and
their columns can be added dynamically. The value of each
column can store multiple versions. That is, several pairs of a data
value and its timestamp as its version can be stored. Therefore,
this model can be viewed as a multidimensional mapping that can
retrieve the data given three values: row key, column, and
timestamp.

The data to be stored in the fingerprint database are the ternary
tuples of (fingerprint, time, audio identifier) as described in
Section 2.1. Various designs of NoSQL database schema of the
wide column stores for efficient storage of these tuples are
possible as described below. We name them as Schema P,
Schema T, and Schema L.

1) Schema P
The row key stores a fingerprint, and one column family is

allocated. Each column of the column family stores a pair of
(time, audio identifier). In BigTable, the timestamp which
indicates the version may be set by the system or in the
application. In the case of the NoSQL database belonging to the
category of the wide column stores where the latter capability is
supported, it is possible to have a variation of Schema P where
only the audio identifier is stored as the value of the column, and
the time is set to the timestamp as its version. Another variation is
to allocate one column for all the pairs to store a list of audio
identifiers with their respective times set to the timestamps as
their versions. This variation is conceivable only when the
NoSQL database supports a very large number of versions of data
per column for a row key.

2) Schema T
The row key stores a fingerprint, and one column family is

allocated. For each audio source, a column is allocated in the
column family to store the time. If the same fingerprints are
extracted several times from the same audio source, multiple
number of different times could be stored as different versions. In
the case of the NoSQL database belonging to the category of the
wide column stores which allows the application to set the
timestamp, it is possible to have a variation of Schema T where
only a list of non-null indicator is stored as the value of the
column, and the respective times are set to the timestamps as their
versions.

3) Schema L
The row key stores a fingerprint, and one column family is

allocated. A column is allocated in the column family to store a
list of (time, audio identifier) pairs. It is possible to have
variations of Schema L to deal with the case that this list is too
long. First, the row key stores a composite value of <fingerprint:
audio identifier> and the column stores a list of (time, audio
identifier) pairs, where the audio identifier in the row key is the
maximum of the audio identifiers stored in its corresponding
column. The list is vertically split according to the audio
identifiers. Secondly, in the case of the NoSQL database
belonging to the category of the wide column stores which allows
the application to set the timestamp, the column stores multiple
lists of (time, audio identifier) pairs, which are disjoint with each
other. Each list is treated as different version. In this variation, the
list is horizontally split.

In the experiments of this paper, we also considered the
conventional relational database as a repository of the fingerprint

디지털콘텐츠학회논문지(J. DCS) Vol. 18, No. 5, pp. 811-820, Aug. 2017

http://dx.doi.org/10.9728/dcs.2017.18.5.811 816

data for performance comparison. In the case of a relational
database, a table schema composed of three columns storing
respectively fingerprint, time, and audio identifier is used. Since
all the three columns do not have uniqueness property, the
composite key consisting of all the three columns are declared as
the primary key. An index is created on the fingerprint column to
improve retrieval performance. As for the NoSQL schemas
designed above, only the original three schemas are considered in
the experiments to relax the functional requirements of the
NoSQL database employed for the audio service.

Ⅳ. Experiments

In this section, the performance of the content-based audio
retrieval system designed in the previous section is evaluated
through experiments using real world audio data, and the
experimental results are described and analyzed.

4-1 Outline of the Experiments

Three sets of experiments were conducted. First, as the basic
experiments, we compared the efficiency of the fingerprint
database between a NoSQL database and a relational database
as well as among the three schemas of a NoSQL database. In
this set of experiments, we compared the performance of the
initial load, the additional inserts, the sample search after the
initial load, and the sample search after the additional inserts.
The volume of data used is 500 audio sources. Secondly, as the
experiments on the scalability, we increased the volume of data
up to 10,000 audio sources, and compared the scalability of a
NoSQL database and that of a relational database as the data
volume increases. Thirdly, as the experiments on the
performance enhancement in a cluster computing environment
with a NoSQL database, we increased the number of machines
and that of nodes, and measured the performance improvements
as the computing power increases horizontally.

All the experiments were conducted on a system equipped
with 6GHz CPU, 2GB RAM, and 250GB HDD in Ubuntu 64bit
OS environment. Implementation of MapReduce was done on
the Hadoop platform. As a fingerprint database, one relational
database and one NoSQL database belong to the category of the
wide column stores were used. All the implementations were
done in Java.

As for the audio data, publicly available MIDI files in
MuseScore [24] were used. Among the various information
stored in MIDI files, we extracted the pitches of the main
melody and their corresponding time offsets, created a string

(a)

(b)
그림 4. 초기 적재 및 샘플 검색에 대한 기본 실험

Fig. 4. Basic Experiments for Initial Load and Sample
Search

consisting of (pitch, time) pairs using jFugue [25], an open
source programming library for Java. The pitch is one of the
information directly related to the frequency of a sound, it is
represented as an integer in the range of 0-127 in MIDI files. In
our experiments, the pitch was used as the frequency when the
fingerprints are extracted by the Shazam’s algorithm.

4-2 Experimental Results and Analysis

1) Basic Experiments
Fig. 4(a) compares the time taken for the initial load of the

fingerprint data to a relational database and that to a NoSQL
database with three different schemas. The volume of data used
is 500 audio sources. Fig. 4(b) compares the time taken to
retrieve the audio sources that are matched against a given
audio sample right after the initial load. As the audio sample, a
part of randomly selected audio source whose fingerprints are
stored in the database was used. Five audio sources were
selected for each experiment, and the average of the measured
times was obtained. We also verified the accuracy of the
searches. Fig. 5(a) compares the time it takes to insert the fi

A Content-based Audio Retrieval System Supporting Efficient Expansion of Audio Database

817 http://www.dcs.or.kr

(a)

(b)
그림 5. 추가 삽입 및 샘플 검색에 대한 기본 실험

Fig. 5. Basic Experiments for Additional Insert and
Sample Search

ngerprint data out of a new set of audio sources to the existing
database. The additional insert was conducted by adding 100
new audio sources to the database. Regardless of the number of
audio sources stored already in the database, the number of
newly inserted audio sources is equal to 100 for each additional
insert. Thus, it is shown to take almost the same time for each
additional insert. Fig. 5(b) compares the time taken to retrieve
audio sources that are matched against a given audio sample
after the additional insert.

In all the experiments, the system with a NoSQL database
significantly outperform that with a relational database. This
means that it is more appropriate to use a NoSQL database than
a traditional relational database as a repository of the fingerprint
data for audio sources. Comparisons among the three schemas
of the NoSQL database reveal that the time for both the initial
load and the additional insert with Schema L takes longer than
that with Schema P or Schema T as shown in Fig. 4(a) and Fig.
5(a). This is because, in the case of the schema L, the overhead
of updating the list of (time, audio identifier) pairs in those

(a)

(b)
그림 6. 초기 적재 및 샘플 검색에 대한 확장성 실험

Fig. 6. Experiments on Scalability for Initial Load and
Sample Search

operations incurs. However, such an overhead is amortized in
the performance of audio retrieval in the audio service where
new set of audio sources are continually added. In other words,
considering the performance trade-off between insertion and
search, the sacrifice in the insertion performance is redeemed as
the effectiveness in the sample search. Such enhancement of
retrieval performance is not noticeable immediately after the
initial load of the fingerprint data as shown in Fig. 4(b), where
there was not yet any additional insert. However, after the
additional inserts in Fig. 5(b), the performance with Schema L
is considerably better than that of Schema P or Schema T.

2) Experiments on Scalability
The same set of the basic experiments were carried out for a

much larger set of audio sources to see if the system is scalable.
In this set of experiments, we increased the volume of data up
to 10,000 audio sources, while the volume of data used in the

디지털콘텐츠학회논문지(J. DCS) Vol. 18, No. 5, pp. 811-820, Aug. 2017

http://dx.doi.org/10.9728/dcs.2017.18.5.811 818

b

(a)

(b)
그림 7. 추가 삽입 및 샘플 검색에 대한 확장성 실험

Fig. 7. Experiments on Scalability for Additional Insert
and Sample Search

asic experiments was 500 audio sources. The additional insert
was conducted by adding 1,000 new audio sources to the
database. Fig. 6 and Fig. 7 show the results of the experiments,
each of which respectively corresponds to the experimental
results of Fig. 4 and Fig. 5 for smaller set of data in the basic
experiments. As for the NoSQL database, only Schema L was
considered in comparison with the relational database, because
it had shown the best search performance in the basic
experiments. In all the experiments, the scalability with a
NoSQL database is much better than that with a relational
database. While the system with a relational database turns out
to be not so scalable as the number of audio sources increases,
the scalability with a NoSQL database is obviously observed.

3) Experiments on Performance Enhancement in a Cluster
Environment

In this set of experiments, the number of machines in a
cluster for the NoSQL database is varied from 1 to 4 while the

(a)

(b)
그림 8. 머쉰 클러스터에서 초기 적재 및 샘플 검색의 성능

향상

Fig. 8. Performance Enhancement in a Machine
Cluster for Initial Load and Sample Search

number of nodes per machine was set to 3. That is, the number
of nodes in the cluster changes from 3 to 12. For a set of 10,000
audio sources, the same set of experiments are carried out to
measure the performance enhancement as the size of the cluster
increases. Fig. 8 and Fig. 9 show the results. As the number of
nodes increases, the performance of all the operations, the
initial load, the additional insert, and the two cases of sample
searches, against the NoSQL database are improved compared
to that in the case of 3 nodes in 1 machine. In particular, we can
observe that the system with the NoSQL database gets more
scalable as the number of nodes increases.

Ⅴ. Conclusions and Further Research

In this paper, we presented a design of a content-based audio
retrieval system that runs in a cluster computing environment

A Content-based Audio Retrieval System Supporting Efficient Expansion of Audio Database

819 http://www.dcs.or.kr

(a)

(b)
그림 9. 머쉰 클러스터에서 추가 삽입 및 샘플 검색의 성능

향상

Fig. 9. Performance Enhancement in a Machine
Cluster for Additional Insert and Sample
Search

with a NoSQL database to store and index the audio fingerprints,
which are extracted using the Shazam's algorithm. MapReduce is
used both in the process of storing the fingerprint data and in the
audio retrieval given an audio sample. Using a large set of real
world audio data, its performance of main database operations is
evaluated. Due to the big data processing capabilities employed,
the scalability of the system is observed. In particular, a good
retrieval performance is achieved despite the continual expansion
of the database occurred by the continual additions of new set of
audio sources for the audio service, without periodical
reorganization of the database.

Further research work includes the following: First, it is
necessary to improve the performance of additional insert
operations which are executed for the database expansion every
time a new set of audio sources is added for the audio service.
Further refinements of the proposed NoSQL database schemas

are necessary to deal with this issue. Secondly, it is necessary to
study the efficient modeling of the audio fingerprint data when a
NoSQL database in the category of the key-value stores, which
are also very popular in the development of web-scale
applications, is used instead of the one of the wide column stores.
Finally, alternative storage systems and access methods for a very
large volume of audio fingerprint data need to be investigated.
The storage platforms for big data processing such as distributed
file systems and the techniques of parallel processing could be
considered [26][27].

References

[1] Market Overview, IFPI Digital Music Report 2015,
Available: http://www.ifpi.org/downloads/Digital-Music-
Report-2015.pdf.

[2] D. Turnbull, L. Barrington, and G. Lanckriet, “Five
approaches to collecting tags for music,” in Proceedings of
the 19th International Conference on Music Information
Retrieval, pp 225–230, 2008.

[3] S. Lee, M. Masoud, J. Balaji, S. Belkasim, R. Sunderraman,
and S. Moon, “A Survey of Tag-based Information
Retrieval,” International Journal of Multimedia Information
Retrieval, Vol. 6, pp. 99–113, 2017.

[4] N. Borjian, E. Kabir, S. Seyedin, and E. Masehian, “A
Query-By-Example Music Retrieval System Using Feature
and Decision Fusion,” Multimedia Tools and Applications,
2017 [Online]. Available:
https://link.springer.com/content/pdf/10.1007%2Fs11042-01
7-4524-1.pdf.

[5] M. Kaminskas and F. Ricci, “Contextual music information
retrieval and recommendation: State of the art and
challenges,” Computer Science Review, Vol. 6, No. 2-3, pp.
89–119, 2012.

[6] P. Cano, E. Batle, T. Kalker, and J. Haitsma, “A review of
algorithms for audio fingerprinting,” in Proceedings of IEEE
Workshop on Multimedia Signal Processing, pp. 169-173,
Dec. 2002.

[7] C. Yu, R. Wang, J. Xiao, and J. Sun, “High Performance
Indexing for Massive Audio Fingerprint Data,” IEEE
Transactions on Consumer Electronics, Vol. 60, No. 4,
pp.690-695, November 2014.

[8] J. Wenyu, Z. Yongwei, B. Xiaoming, and Y. Rongshan,
“Cloud-based Audio Fingerprinting Service,” in Proceedings
of Asia Pacific Signal and Information Processing
Association Annual Summit and Conference, pp. 1-6, 2012.

[9] J. Lee and H. Jung, “Content-based Music Searching System

디지털콘텐츠학회논문지(J. DCS) Vol. 18, No. 5, pp. 811-820, Aug. 2017

http://dx.doi.org/10.9728/dcs.2017.18.5.811 820

Using Hadoop,” in Proceedings of the Third International
Conference on Emerging Databases, pp. 311-316, 2011.

[10] A. Wang, “An Industrial Strength Audio Retrieval
Algorithm” in Proceedings of the 4th International
Conference on Music Information Retrieval, pp. 7-13, 2003.

[11] Shazam, https://www.shazam.com/.
[12] A. Wang, “The Shazam Music Recognition Service,”

Communications of the ACM, Vol. 49, No. 8, pp. 44-48,
2006.

[13] J. Dean and S. Ghemawat, “MapReduce: Simplified Data
Processing on Large Clusters,” in Proceedings of the 6th
Symposium on Operating Systems Design and
Implementation, pp. 137-149, 2004.

[14] Apache Hadoop, https://hadoop.apache.org/.
[15] D. Pritchett, “BASE: An ACID Alternative,” ACM Queue,

pp. 48-55, May/June, 2008.
[16] R. Cattell, “Scalable SQL and NoSQL Data Stores,”

SIGMOD Record, Vol. 39, No. 4, pp. 12-27, December
2010.

[17] F. Chang, J. Dean, S. Ghemawat, W. Hsieh, D. Wallach, M.
Burrows, T. Chandra, A. Fikes, and R. Gruber, “Bigtable: A
Distributed Storage System for Structured Data,” in
Proceedings of the 7th USENIX Symposium on Operating
Systems Design and Implementation, pp. 205-218, 2006.

[18] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A.
Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall, W.
Vogels, “Dynamo: Amazon’s Highly Available Key-value
Store,” in Proceedings of ACM Symposium on Operating
Systems Principles, pp. 205-220, 2007.

[19] Memcached, www.memcached.org
[20] NoSQL Database, http://www.nosql-database.org/.
[21] J. Haitsma and T. Kalker, “A Highly Robust Audio

Fingerprinting System With an Efficient Search Strategy,”
Journal of New Music Research, Vol. 32, No. 2, pp.
211-221, 2003.

[22] S. Baluja and M. Covell, “Waveprint: Efficient
wavelet-based audio fingerprinting,” Pattern Recognition,
Vol. 41, pp. 3467–3480, 2008.

[23] S. Lee, D. Yook, and S. Chang, “An Efficient Audio
Fingerprint Search Algorithm for Music Retrieval,” IEEE
Transactions on Consumer Electronics, Vol. 59, No. 3, pp.

652-656, Aug. 2013.
[24] MuseScore, https://musescore.org/.
[25] JFugue, http://www.jfugue.org/.
[26] J. Yoon and U. Song, “Study of Optimization through

Performance Analysis of Parallel Distributed File System,”
Journal of Digital Contents Society, Vol. 17, No. 5, pp.
409-416, Oct. 2016.

[27] V. Nguyen, S. Nguyen, and K. Kim, “Design of a Platform
for Collecting and Analyzing Agricultural Big Data,”
Journal of Digital Contents Society, Vol. 18, No. 1, pp.
149-158, Feb. 2017.

박지훈(Ji Hun Park)

2013: B.S., Department of Computer

Engineering, DaeJeon University

2016: M.E., Department of Computer

Science and Engineering,

Chung-Ang University

Areas of Interest： Audio Data Processing, Distributed

Processing of Big Data

강현철(Hyunchul Kang)

1983: B.E., Computer Engineering,

Seoul National University

1985: M.S., Computer Science, U. of

Maryland, College Park

1987: Ph.D., Computer Science, U. of

Maryland, College Park

1988～Present: Professor, School of Computer Science and

Engineering, Chung-Ang University

Areas of Interest： Database, Big Data, Sensor Network,

Internet of Things

