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[요    약] 

음원 서비스의 주요 기능 중 하나인 내용 기반 검색을 위해 음원의 지문을 채취하여 데이타베이스에 저장하고 색인하여 검색에 

활용하는 기법이 널리 사용되고 있다. 그런데 지속적으로 추가되는 신규 음원의 지문이 기존의 데이타베이스에 계속 삽입되면 공

간 효율 및 음원 검색 성능의 저하가 점차 초래되는 문제점이 있다. 따라서 시스템 운용 비용의 증가를 가져오는 주기적인 데이타

베이스 재구성 없이 효율적인 음원 데이타베이스의 확장을 지원하는 기법이 요구된다. 본 논문에서는 샤잠의 지문 채취 알고리즘

을 기반으로 클러스터 컴퓨팅 환경에서 맵리듀스 및 NoSQL 데이타베이스를 사용하여 이러한 문제를 해결하는 내용 기반 음원 검

색 시스템의 설계를 제시하고 실제 음원 데이터를 이용한 다양한 실험을 통해 그 성능을 평가한다.

[Abstract] 

For content-based audio retrieval which is one of main functions in audio service, the techniques for extracting fingerprints 
from the audio source, storing and indexing them in a database are widely used. However, if the fingerprints of new audio sources 
are continually inserted into the database, there is a problem that space efficiency as well as audio retrieval performance are 
gradually deteriorated. Therefore, there is a need for techniques to support efficient expansion of audio database without periodic 
reorganization of the database that would increase the system operation cost. In this paper, we design a content-based audio 
retrieval system that solves this problem by using MapReduce and NoSQL database in a cluster computing environment based on 
the Shazam's fingerprinting algorithm, and evaluate its performance through a detailed set of experiments using real world audio 
data.
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Ⅰ. Introduction

With the advancement of the Internet and communication 
technologies, the industry of digital audio services where various 
mobile devices such as smart phones are commonly used is 
growing in the trend of simultaneous transition of PC to mobile 
and download to streaming [1]. In the speech recognition AI 
speakers (e.g., Amazon Echo), which are spreading recently due 
to the development of Artificial Intelligence technology, the 
interoperability with the audio service is one of the key 
components.

Much research has been conducted on music information 
retrieval and recommendation for audio service. The music 
retrieval could be basically based on metadata such as song title, 
name of the singer, etc., tag-based which allows music retrieval 
possible without knowing the exact information about the music 
[2][3], or content-based where the music that matches a sample 
query given in the form of an audio clip is retrieved [4][5].  In the 
content-based retrieval, one of the widely used approaches is to 
extract the fingerprints of the audio sources, store and index them 
in a database, and use them for the match with the given audio 
sample [6][7]. Since the number of audio sources is vast and the 
volume of the fingerprint database is accordingly huge, the 
scalability of the audio database is important. To deal with this 
issue, the big data processing technologies such as Google's 
MapReduce and NoSQL database can be employed [8][9].

In this paper, we have investigated the techniques to construct 
and efficiently maintain a fingerprint database for a content-based 
audio retrieval system. One of important characteristics in audio 
services is that new audio sources are continually added. The 
fingerprint data for these would be continually inserted into the 
existing database and the database and the index are accordingly 
updated. As a side effect, the space utilization efficiency and the 
audio retrieval performance are to be gradually degraded. The 
most basic method to solve this problem is the periodic 
reorganization of the database, but this would increase the system 
operation cost. Therefore, some techniques are required whereby 
the database expansion due to the addition of new audio sources 
could be efficiently conducted. In this paper, we design an audio 
retrieval system based on the fingerprinting algorithm of Shazam 
[10][11][12], employing MapReduce and a NoSQL database in a 
clustered computing environment. We evaluate its performance 
through experiments to show that it efficiently supports the 
database expansion.

The rest of this paper is organized as follows. In Section 2, we 
describe Shazam's algorithm, MapReduce, and NoSQL database 
as preliminaries, and then describe the related work on the 
fingerprint databases. In Section 3, we first describe the 

MapReduce steps for the fingerprint storage and those for the 
audio retrieval given an audio sample. Then, we describe NoSQL 
database schema designs for fingerprint storage. In Section 4, we 
report and analyze the experimental results. Finally, we describe 
further research and concludes the paper in Section 5.

Ⅱ. Preliminaries and Related Work

In this section, we first describe Shazam's algorithm, 
MapReduce, and NoSQL database as background knowledge of 
this paper, and then describe related work on audio fingerprint 
databases.

2-1 Shazam's Algorithm

Shazam's algorithm is to extract fingerprints of the audio 
source represented in a 2-dimensional space of time and 
frequency, and to use them for audio retrieval. The outline of the 
technique introduced in [10] is as follows. Fig. 1(a) shows only 
four adjacent points P1, P2, P3, and P4 among all the points 
representing the time and frequency values of an audio source. 
The time and frequency of point Pi are Ti and Fi, respectively, 
where the time means the time offset from the beginning of the 
audio source to the corresponding point.

When P1 is an anchor point and P2 is a target point, fingerprint 
<F1: F2: ∆T12> is extracted between the two points, where ∆T12 
denotes the time difference between the two points, i.e., T2 − T1. 
Similarly, when P2 is an anchor point and P3 is a target point, 
fingerprint <F2: F3: ∆T23> is extracted. When P3 is an anchor point 
and P4 is a target point, fingerprint <F3: F4: ∆T34> is extracted. 
Given an anchor point, its target zone where several of its 
adjacent points are located can be set, and fingerprints can be 
extracted for each target point within the target zone. As the 
number of fingerprints extracted increases, the accuracy of audio 
retrieval would get higher, but the volume of the fingerprint 
database and its indices would increase and the maintenance 
overhead would increase, too. 

                                (a)                                          (b)
그림 1. (a) 시간-주파수 2차원 공간 (b) 지문 데이터 3-투플

Fig. 1. (a) 2-Dimensional Space of Time and Frequency 
(b) Ternary Tuples of Fingerprint Data
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                           (a)                                               (b)
그림 2. (a) 오디오 샘플의 시간과 주파수

       (b) 지문 데이터 3-투플

Fig. 2. (a) Time and Frequency of Audio Sample        
 (b) Ternary Tuples of Fingerprint Data

In order to make audio retrieval possible, it is necessary to store 
in the database not only the fingerprint but its time of the 
corresponding anchor point and the identifier of the 
corresponding audio source. That is, the data stored in the 
database is a ternary tuple of (fingerprint, time, audio identifier). 
Let M1 be the identifier of the audio source in Fig. 1(a). Then, the 
three ternary tuples of fingerprint data shown in Fig. 1(b) are 
stored in the database.

When an audio sample is given as a query, the audio sources 
containing it are retrieved as follows. Fingerprints are extracted 
by the same Shazam’s algorithm for the audio sample, and a list 
of (fingerprint, time) pairs is produced, where time is the time of 
the anchor point for the fingerprint. For each fingerprint out of 
these (fingerprint, time) pairs, the database is searched for the 
(fingerprint, time, audio identifier) tuples whose fingerprint is 
matched in order to produce the list of (audio identifier, database 
time, sample time) tuples. After these tuples are sorted on the 
audio identifier, a list of the (database time, sample time) pairs is 
produced for each audio identifier. Suppose this particular audio 
source in the database is the one that is matched against the audio 
sample. Then, plotting the (database time, sample time) pairs in a 
2-dimensional space where x-axis is the database time and y-axis 
is the sample time would make a diagonal line. This is because 
the interval between adjacent times in the time sequence of the 
matched audio source is equal to that of the audio sample.

For example, let us consider an audio sample S composed of 
the four points shown in Fig. 2(a). They are the 4 points p1, p2, p3, 
p4, respectively, at time t1 = 0, t2, t3, t4 shown in Fig. 2(a). That is, 
pi of Fig. 2(a) corresponds to Pi of Fig. 1(a), i = 1, …, 4. If the 
same Shazam’s algorithm is applied to the four points of Fig. 
2(a), the list of the pairs shown in Fig. 2(b) is produced.

Searching the database with the fingerprints in Fig. 2(b), the 
ternary tuples in Fig. 3(a) is produced, because ∆T12 = ∆t12, ∆T23 = 
∆t23, ∆T34 = ∆t34. For the audio source M1, plotting the three points 

      (a)                                                     (b)
그림 3. (a) 데이타베이스 검색으로 생성된 3-투플 (b) 대각선

Fig. 3. (a) Ternary Tuples Produced After Database 
Search (b) Diagonal Line

(T1, t1), (T2, t2), (T3, t3) in a 2-dimensional space, a diagonal line 
of Fig. 3(b) appears because ∆T12 = ∆t12, ∆T23 = ∆t23, ∆T34 = ∆t34.

2-2 MapReduce

MapReduce is a programming model presented by Google to 
process large data sets such as big data in a distributed and 
parallel way on a machine cluster [13]. Its open source 
implementations such as the one in the Apache Hadoop 
framework are widely used [14].

The MapReduce model consists mainly of a map function and 
a reduction function. The map function processes the input data to 
generate a list of (key, value) pairs. For each key out of the map 
functions, the reduce function groups and/or aggregates the list of 
its values, producing a list of values as required in the application. 
These operations are performed in distributed and parallel 
processing at each node of the cluster, and data transmission 
occurs between nodes in the process. The complete execution 
steps of the MapReduce are as follows: (1) input the data, (2) 
map, (3) shuffle the intermediate results of the map step, (4) 
reduce, and (5) output the result.         

2-3 NoSQL Database

The conventional relational databases are characterized with 
the tabular data structure, transaction support with ACID 
properties, joins, SQL standard query language, etc. The NoSQL 
database features more flexible data structures, simple APIs, and 
more relaxed properties than ACID, such as BASE [15], being 
distributed in a cluster environment, providing horizontal 
scalability, and supporting big data [16].

The development of NoSQL databases has started for the 
applications that need to provide Web scale scalability, and its 
proof of concept is given through systems like Google's BigTable 
[17], Amazon's Dynamo [18], and Memcached [19]. Now, there 
are a variety of NoSQL database products, and they can be 
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classified on the data model into (1) wide column stores such as 
HBase and Cassandra, (2) key-value stores such as DynamoDB 
and MemcacheDB, (3) document stores such as MongoDB and 
CouchDB, and so on [20].

2-4 Related Work on Audio Fingerprint Database

The representative audio fingerprinting techniques include 
Shazam [10], Haitsma and Kalker's technique [21], and Google's 
Waveprint [22]. The fingerprints extracted from audio sources 
with any of these techniques are to be stored in a database. 
Because the number of audio sources is so large and the volume 
of fingerprint data is accordingly so large as well, indexing 
methods for efficient retrieval are essential [7].

In Haitsma and Kalker's technique [21], a 32-bit-length 
sub-fingerprint is extracted from the extracted fingerprint and 
used as a unit of search. In order to expedite query processing 
with a fingerprint block composed of 256 consecutive 
sub-fingerprints, a lookup table that can directly search for a 
sub-fingerprint is constructed as an index of the fingerprint 
database. The lookup table lists all possible sub-fingerprint values 
as its entries, meaning that there are as many as 232 entries. Since 
it may not be feasible in terms of memory capacity, the lookup 
table can be implemented as a hash table. In [23], techniques are 
proposed to improve the retrieval performance using the lookup 
table of Haitsma and Kalker’s technique.

Since the number of audio sources provided in an audio service 
is large, scalability is important for the fingerprint database. 
Scalability could be provided by employing big data processing 
technologies. In [8], the techniques to implement the fingerprint 
database with the Google’s Waveprint algorithm on the cloud 
using Hadoop/MapReduce are presented. In [9], MapReduce is 
applied in the process of constructing the fingerprint database 
with the Shazam’s algorithm. The proposed MapReduce 
generates an indexed-sequential file of fingerprint data for 
efficient search.  

Ⅲ. System Design

This section describes the design of the content-based audio 
retrieval system of this paper. We first describe the MapReduce 
steps for storing fingerprint data in the database and for audio 
retrieval given an audio sample. Then, we describe the designs of 
the NoSQL database schema for storing large volume of 
fingerprint data.

3-1 MapReduce Steps

Since processing of large volume of audio data is carried out 
on several nodes in a cluster, MapReduce can be effectively 
utilized in the operations involved. Such operations include the 
followings: (1) Initial load: The bulk load of the fingerprint data 
obtained from a large number of initial audio sources into the 
database. (2) Additional insert: The insert of the fingerprint data 
obtained from additional audio sources into the database. This 
operation is executed every time a new set of audio sources is 
added for the audio service. (3) Sample search: The search of the 
database for retrieving audio sources that match a given audio 
sample.
   In [9], the map and reduce steps for preparing the initial load 
are presented as follows. The map generates a list of 
(fingerprint, <time: audio identifier>) pairs from each audio 
file. In other words, the key is fingerprint, and the value is the 
combination of time and audio identifier. The reduce generates 
a list of <time: audio identifier> composite values for each 
fingerprint. In all, the list of these fingerprints and their 
corresponding lists of <time: audio identifier> composite values 
is to be loaded and indexed in the database. These MapReduce 
steps for the initial load can be re-used for the additional insert 
as well.

As for the operation of sample search, we design its 
MapReduce steps as follows. After a list of (fingerprint, time) 
pairs is obtained from the audio sample, the map generates a list 
of (audio identifier, <database time: sample time>) pairs by 
searching the database with each fingerprint f out of the audio 
sample for the composite value <time: audio identifier> of the 
ternary tuple in the database whose fingerprint matches f. In 
other words, the key is audio identifier while the value is 
<database time: sample time>. The reduce generates a list of 
<database time: sample time> composite values for each audio 
identifier. This list is used to determine if the particular audio 
source at hand is a match or not. The results of these map and 
reduce steps for the three types of operations are summarized in 
Table 1. 

표 1. 맵리듀스 단계의 결과

Table. 1. Results of MapReduce Steps
                    Operation
      Step 

Initial Load & 
Additional Insert Sample Search

Map
A list of (fingerprint, 

<time: audio 
identifier>) pairs

A list of (audio 
identifier, <database 
time: sample time>) 

pairs

Reduce

For each fingerprint, 
a list of <time: audio 
identifier> composite 

values

For each audio 
identifier, 

a list of <database time: 
sample time> composite 

values
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3-2 NoSQL Database Schema

As described in Section 3.1, there are three types of main 
database operations: initial load, additional insert, and sample 
search. In audio services, the addition of a new set of audio 
sources continues, and the additional inserts are executed 
whenever such an event happens. The database is not static. 
Rather, it is supposed to be continually updated. In general, a 
storage system of a database can effectively perform an initial 
allocation of space for storing and indexing data to be 
bulk-loaded, thereby achieving very good retrieval performance. 
However, this initial space and search efficiency is to be 
gradually degraded due to the subsequent database updates. 
Eventually, it would suffer from lower space utilization and poor 
search performance. When we design a NoSQL schema for the 
fingerprint database, we need to consider that the additional 
inserts are the update operations with such effects.

In order to prevent the performance degradation in audio 
retrieval because of a series of additional inserts, it is necessary to 
periodically reorganize the database. However, considering the 
number of the audio sources, it takes a lot of time and might incur 
formidable cost of system operation. Therefore, a key point to 
consider in schema design is the performance trade-off between 
insertion of new audio sources and audio retrieval. Different 
schema designs are possible depending on whether the insertion 
performance is more important or the search performance is more 
important. In this paper, we take into account that the frequency 
of sample search operations is much higher than that of insert 
operations.

As described in Section 2.3, there are a number of NoSQL 
database models. In this paper, we consider the NoSQL database 
that belongs to the category of a wide column stores, one of 
whose original implementations is BigTable developed by Google 
[17]. The data in a wide column store can be modeled as 
consisting of a row key and multiple column families. Each 
column family consists of multiple columns. Column families and 
their columns can be added dynamically. The value of each 
column can store multiple versions. That is, several pairs of a data 
value and its timestamp as its version can be stored. Therefore, 
this model can be viewed as a multidimensional mapping that can 
retrieve the data given three values: row key, column, and 
timestamp.

The data to be stored in the fingerprint database are the ternary 
tuples of (fingerprint, time, audio identifier) as described in 
Section 2.1. Various designs of NoSQL database schema of the 
wide column stores for efficient storage of these tuples are 
possible as described below. We name them as Schema P, 
Schema T, and Schema L.

1)  Schema P
The row key stores a fingerprint, and one column family is 

allocated. Each column of the column family stores a pair of 
(time, audio identifier). In BigTable, the timestamp which 
indicates the version may be set by the system or in the 
application. In the case of the NoSQL database belonging to the 
category of the wide column stores where the latter capability is 
supported, it is possible to have a variation of Schema P where 
only the audio identifier is stored as the value of the column, and 
the time is set to the timestamp as its version. Another variation is 
to allocate one column for all the pairs to store a list of audio 
identifiers with their respective times set to the timestamps as 
their versions. This variation is conceivable only when the 
NoSQL database supports a very large number of versions of data 
per column for a row key.

2)  Schema T
The row key stores a fingerprint, and one column family is 

allocated. For each audio source, a column is allocated in the 
column family to store the time. If the same fingerprints are 
extracted several times from the same audio source, multiple 
number of different times could be stored as different versions. In 
the case of the NoSQL database belonging to the category of the 
wide column stores which allows the application to set the 
timestamp, it is possible to have a variation of Schema T where 
only a list of non-null indicator is stored as the value of the 
column, and the respective times are set to the timestamps as their 
versions.

3)  Schema L
The row key stores a fingerprint, and one column family is 

allocated. A column is allocated in the column family to store a 
list of (time, audio identifier) pairs. It is possible to have 
variations of Schema L to deal with the case that this list is too 
long. First, the row key stores a composite value of <fingerprint: 
audio identifier> and the column stores a list of (time, audio 
identifier) pairs, where the audio identifier in the row key is the 
maximum of the audio identifiers stored in its corresponding 
column. The list is vertically split according to the audio 
identifiers. Secondly, in the case of the NoSQL database 
belonging to the category of the wide column stores which allows 
the application to set the timestamp, the column stores multiple 
lists of (time, audio identifier) pairs, which are disjoint with each 
other. Each list is treated as different version. In this variation, the 
list is horizontally split.

In the experiments of this paper, we also considered the 
conventional relational database as a repository of the fingerprint 
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data for performance comparison. In the case of a relational 
database, a table schema composed of three columns storing 
respectively fingerprint, time, and audio identifier is used. Since 
all the three columns do not have uniqueness property, the 
composite key consisting of all the three columns are declared as 
the primary key. An index is created on the fingerprint column to 
improve retrieval performance. As for the NoSQL schemas 
designed above, only the original three schemas are considered in 
the experiments to relax the functional requirements of the 
NoSQL database employed for the audio service. 

Ⅳ. Experiments

In this section, the performance of the content-based audio 
retrieval system designed in the previous section is evaluated 
through experiments using real world audio data, and the 
experimental results are described and analyzed.

4-1 Outline of the Experiments

Three sets of experiments were conducted. First, as the basic 
experiments, we compared the efficiency of the fingerprint 
database between a NoSQL database and a relational database 
as well as among the three schemas of a NoSQL database. In 
this set of experiments, we compared the performance of the 
initial load, the additional inserts, the sample search after the 
initial load, and the sample search after the additional inserts. 
The volume of data used is 500 audio sources. Secondly, as the 
experiments on the scalability, we increased the volume of data 
up to 10,000 audio sources, and compared the scalability of a 
NoSQL database and that of a relational database as the data 
volume increases. Thirdly, as the experiments on the 
performance enhancement in a cluster computing environment 
with a NoSQL database, we increased the number of machines 
and that of nodes, and measured the performance improvements 
as the computing power increases horizontally.

All the experiments were conducted on a system equipped 
with 6GHz CPU, 2GB RAM, and 250GB HDD in Ubuntu 64bit 
OS environment. Implementation of MapReduce was done on 
the Hadoop platform. As a fingerprint database, one relational 
database and one NoSQL database belong to the category of the 
wide column stores were used. All the implementations were 
done in Java.

As for the audio data, publicly available MIDI files in 
MuseScore [24] were used. Among the various information 
stored in MIDI files, we extracted the pitches of the main 
melody and their corresponding time offsets, created a string 

(a)

(b)
그림 4. 초기 적재 및 샘플 검색에 대한 기본 실험

Fig. 4. Basic Experiments for Initial Load and Sample 
Search

consisting of (pitch, time) pairs using jFugue [25], an open 
source programming library for Java. The pitch is one of the 
information directly related to the frequency of a sound, it is 
represented as an integer in the range of 0-127 in MIDI files. In 
our experiments, the pitch was used as the frequency when the 
fingerprints are extracted by the Shazam’s algorithm.

4-2 Experimental Results and Analysis

1)  Basic Experiments
Fig. 4(a) compares the time taken for the initial load of the 

fingerprint data to a relational database and that to a NoSQL 
database with three different schemas. The volume of data used 
is 500 audio sources. Fig. 4(b) compares the time taken to 
retrieve the audio sources that are matched against a given 
audio sample right after the initial load. As the audio sample, a 
part of randomly selected audio source whose fingerprints are 
stored in the database was used. Five audio sources were 
selected for each experiment, and the average of the measured 
times was obtained. We also verified the accuracy of the 
searches. Fig. 5(a) compares the time it takes to insert the fi
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(a)

(b)
그림 5. 추가 삽입 및 샘플 검색에 대한 기본 실험

Fig. 5. Basic Experiments for Additional Insert and 
Sample Search

ngerprint data out of a new set of audio sources to the existing 
database. The additional insert was conducted by adding 100 
new audio sources to the database. Regardless of the number of 
audio sources stored already in the database, the number of 
newly inserted audio sources is equal to 100 for each additional 
insert. Thus, it is shown to take almost the same time for each 
additional insert. Fig. 5(b) compares the time taken to retrieve 
audio sources that are matched against a given audio sample 
after the additional insert.

In all the experiments, the system with a NoSQL database 
significantly outperform that with a relational database. This 
means that it is more appropriate to use a NoSQL database than 
a traditional relational database as a repository of the fingerprint 
data for audio sources. Comparisons among the three schemas 
of the NoSQL database reveal that the time for both the initial 
load and the additional insert with Schema L takes longer than 
that with Schema P or Schema T as shown in Fig. 4(a) and Fig. 
5(a). This is because, in the case of the schema L, the overhead 
of updating the list of (time, audio identifier) pairs in those 

(a)

(b)
그림 6. 초기 적재 및 샘플 검색에 대한 확장성 실험

Fig. 6. Experiments on Scalability for Initial Load and 
Sample Search

operations incurs. However, such an overhead is amortized in 
the performance of audio retrieval in the audio service where 
new set of audio sources are continually added. In other words, 
considering the performance trade-off between insertion and 
search, the sacrifice in the insertion performance is redeemed as 
the effectiveness in the sample search. Such enhancement of 
retrieval performance is not noticeable immediately after the 
initial load of the fingerprint data as shown in Fig. 4(b), where 
there was not yet any additional insert. However, after the 
additional inserts in Fig. 5(b), the performance with Schema L 
is considerably better than that of Schema P or Schema T.

2)  Experiments on Scalability
The same set of the basic experiments were carried out for a 

much larger set of audio sources to see if the system is scalable. 
In this set of experiments, we increased the volume of data up 
to 10,000 audio sources, while the volume of data used in the 
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(a)

(b)
그림 7. 추가 삽입 및 샘플 검색에 대한 확장성 실험

Fig. 7. Experiments on Scalability for Additional Insert 
and Sample Search

asic experiments was 500 audio sources. The additional insert 
was conducted by adding 1,000 new audio sources to the 
database. Fig. 6 and Fig. 7 show the results of the experiments, 
each of which respectively corresponds to the experimental 
results of Fig. 4 and Fig. 5 for smaller set of data in the basic 
experiments. As for the NoSQL database, only Schema L was 
considered in comparison with the relational database, because 
it had shown the best search performance in the basic 
experiments. In all the experiments, the scalability with a 
NoSQL database is much better than that with a relational 
database. While the system with a relational database turns out 
to be not so scalable as the number of audio sources increases, 
the scalability with a NoSQL database is obviously observed.

3)  Experiments on Performance Enhancement in a Cluster 
Environment

In this set of experiments, the number of machines in a 
cluster for the NoSQL database is varied from 1 to 4 while the 

(a)

(b)
그림 8. 머쉰 클러스터에서 초기 적재 및 샘플 검색의 성능 

향상

Fig. 8. Performance Enhancement in a Machine 
Cluster for Initial Load and Sample Search

number of nodes per machine was set to 3. That is, the number 
of nodes in the cluster changes from 3 to 12. For a set of 10,000 
audio sources, the same set of experiments are carried out to 
measure the performance enhancement as the size of the cluster 
increases. Fig. 8 and Fig. 9 show the results. As the number of 
nodes increases, the performance of all the operations, the 
initial load, the additional insert, and the two cases of sample 
searches, against the NoSQL database are improved compared 
to that in the case of 3 nodes in 1 machine. In particular, we can 
observe that the system with the NoSQL database gets more 
scalable as the number of nodes increases.

Ⅴ. Conclusions and Further Research

In this paper, we presented a design of a content-based audio 
retrieval system that runs in a cluster computing environment 
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(a)

(b)
그림 9. 머쉰 클러스터에서 추가 삽입 및 샘플 검색의 성능 

향상

Fig. 9. Performance Enhancement in a Machine 
Cluster for Additional Insert and Sample 
Search

with a NoSQL database to store and index the audio fingerprints, 
which are extracted using the Shazam's algorithm. MapReduce is 
used both in the process of storing the fingerprint data and in the 
audio retrieval given an audio sample. Using a large set of real 
world audio data, its performance of main database operations is 
evaluated. Due to the big data processing capabilities employed, 
the scalability of the system is observed. In particular, a good 
retrieval performance is achieved despite the continual expansion 
of the database occurred by the continual additions of new set of 
audio sources for the audio service, without periodical 
reorganization of the database.

Further research work includes the following: First, it is 
necessary to improve the performance of additional insert 
operations which are executed for the database expansion every 
time a new set of audio sources is added for the audio service. 
Further refinements of the proposed NoSQL database schemas 

are necessary to deal with this issue. Secondly, it is necessary to 
study the efficient modeling of the audio fingerprint data when a 
NoSQL database in the category of the key-value stores, which 
are also very popular in the development of web-scale 
applications, is used instead of the one of the wide column stores. 
Finally, alternative storage systems and access methods for a very 
large volume of audio fingerprint data need to be investigated. 
The storage platforms for big data processing such as distributed 
file systems and the techniques of parallel processing could be 
considered [26][27].
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