• Title/Summary/Keyword: 대칭 다이아몬드 앤빌 기기

Search Result 6, Processing Time 0.022 seconds

Compression Study on a Synthetic Goethite (합성 괴타이트에 대한 압축실험)

  • Kim, Young-Ho;Hwang, Gil-Chan;Kim, Soon-Oh
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.4
    • /
    • pp.325-330
    • /
    • 2009
  • High pressure x-ray diffraction study was performed on a synthetic FeOOH-goethite to check out its compressibility at room temperature. Angular dispersive x-ray diffraction method was employed using a symmetrical diamond anvil cell with synchrotron radiation. Bulk modulus was determined to be 222.8 GPa under assumption of $K_{T'}$ of 4.0. This value is too high comparing with the previously published values from natural samples. It has been discussed the possible causes to incur its high bulk modulus value according to the production conditions.

A Compression Study on a Synthetic Talc (합성 활석에 대한 압축 연구)

  • Kim, Young-Ho;Kim, Soon-Oh
    • Journal of the Mineralogical Society of Korea
    • /
    • v.27 no.4
    • /
    • pp.283-291
    • /
    • 2014
  • Talc ($Mg_3Si_4O_{10}(OH)_2$), one of sheet silicates, is soft and has been widely used in industry. Powdered talc specimen was synthesized at the pressure of 200 MPa and temperature of $600^{\circ}C$ using external heated hydrothermal high pressure apparatus. High pressure angular dispersive X-ray diffraction (ADXRD) mode experiments were performed at the Pohang Light Source (PLS) using the symmetrical diamond anvil cell (SDAC). Compression pressure was loaded up to 11.06 GPa at room temperature. This synthetic talc shows no phase transition(s) within the present pressure limit. Based on ADXRD data, bulk modulus of talc was calculated to be 72.4 GPa using Birch-Muranghan equation of state (EOS). This value is lower than that of natural talc determined previously.

High Pressure X-ray Diffraction Study of LiFePO4/C-olivine-like Phase (LiFePO4/C-유사 감람석 결정구조에 대한 고압 X-선회절연구)

  • Hwang, Gil-Chan;Kim, Young-Ho
    • Journal of the Mineralogical Society of Korea
    • /
    • v.26 no.1
    • /
    • pp.35-44
    • /
    • 2013
  • Synthetic carbon-coated olivine-like structured lithium iron phosphate ($Li^+Fe^{2+}(PO_4)^{3-}/C$) powder composites were compressed up to 35.0 GPa in the symmetrical diamond anvil cell at room temperature. Bulk modulus of $LiFePO_4/C$ was determined to be $130.1{\pm}10.3$ GPa. New peak appears at the d-spacing of 3.386 ${\AA}$ above 18 GPa, and another new one at 2.854 ${\AA}$ around 35 GPa. The crystallographic symmetry of the sample (i.e. orthorhombic) is apparently retained up to 35 GPa as no clear evidence for the phase transition into spinel structure has been observed. The pressure-induced volume change in the M1 site ($Li^+O_6$) is more significant than those in M2($Fe^{2+}O_6$) and $PO_4$ tetrahedral sites.

Compressibility Study of Pyromorphite at High Pressure (고압 하에서 녹연석의 압축성에 대한 연구)

  • Kim, Young-Ho;Lee, Nuri
    • Journal of the Mineralogical Society of Korea
    • /
    • v.29 no.4
    • /
    • pp.191-198
    • /
    • 2016
  • Pyromorphite($Pb_{4.85}(P_{1.02}O_4)_3Cl_{1.04}$) which belongs to the apatite group was compressed up to 33.4 GPa for its equation of state at ambient temperature. High pressure experiment was performed with symmetrical diamond anvil cell employing the angle dispersive X-ray diffraction method. Pressure was determined by ruby fluorescence calibration method. No phase transition were observed and bulk modulus was determined to be 80(7) GPa when $K{_0}^{\prime}=13(2)$. Employing the normalized pressure-normalized strain analysis, reliability check of the compressible behavior was conducted.

High Pressure Behavior Study of Azurite (고압 하에서 남동석의 거동에 대한 연구)

  • Kim, Young-Ho;Choi, Jinwon;Choi, Jaeyoung
    • Journal of the Mineralogical Society of Korea
    • /
    • v.31 no.4
    • /
    • pp.277-285
    • /
    • 2018
  • Azurite ($Cu_3(CO_3)_2(OH)_2$) was compressed up to 21.52 GPa for its behaviors at ambient temperature. High pressure experiment was performed using the symmetrical diamond anvil cell employed in the angle dispersive X-ray diffraction method. Pressure was determined by ruby fluorescence calibration method. No phase transitions were observed within the present pressure limit and bulk modulus was determined to be 54.4 GPa when ${K_0}^{\prime}$ is fixed to be 4. Applying the normalized pressure-strain analysis, reliability of the azurite compression pattern was checked.

High Pressure Behavior Study of the Apophyllite (KF) (고압 하에서 어안석(KF)의 거동 연구)

  • Kim, Young-Ho;Choi, Jinwon;Heo, Sohee;Jeong, Nangyeong;Hwang, Gil Chan
    • Journal of the Mineralogical Society of Korea
    • /
    • v.28 no.4
    • /
    • pp.325-332
    • /
    • 2015
  • Apophyllite (KF)($K_{0.84}Ca_{3.99}Si_{7.70}O_{20}F_{0.72}{\cdot}8H_2O$), one of the sheet silicates, was compressed up to 7.7 GPa at ambient temperature and 15 high pressure data were obtained. Lattice parameters of the starting specimen were as follows: $a_0=8.954(2)\;{\AA}$, $c_0=15.795(2)\;{\AA}$, $V_0=1266.4(4)\;{\AA}^3$. Symmetrical diamond anvil cell was employed with synchrotron radiation in the mode of angular dispersive X-ray diffraction. Bulk modulus was determined to be 59(4) GPa when ${K_0}^{\prime}$ is 4. No clear first order phase transition symptom was observed in the series of XRD pattern. However, second-order phase transition cannot be ruled out from the correlation between normalized pressure and strain.