DOI QR코드

DOI QR Code

High Pressure X-ray Diffraction Study of LiFePO4/C-olivine-like Phase

LiFePO4/C-유사 감람석 결정구조에 대한 고압 X-선회절연구

  • Hwang, Gil-Chan (Department of Earth and Environment Sciences and Research Institute of Natural Sciences, Gyeongsang National University) ;
  • Kim, Young-Ho (Department of Earth and Environment Sciences and Research Institute of Natural Sciences, Gyeongsang National University)
  • 황길찬 (경상대학교 지구환경과학과 및 기초과학연구소) ;
  • 김영호 (경상대학교 지구환경과학과 및 기초과학연구소)
  • Received : 2013.01.22
  • Accepted : 2013.03.22
  • Published : 2013.03.31

Abstract

Synthetic carbon-coated olivine-like structured lithium iron phosphate ($Li^+Fe^{2+}(PO_4)^{3-}/C$) powder composites were compressed up to 35.0 GPa in the symmetrical diamond anvil cell at room temperature. Bulk modulus of $LiFePO_4/C$ was determined to be $130.1{\pm}10.3$ GPa. New peak appears at the d-spacing of 3.386 ${\AA}$ above 18 GPa, and another new one at 2.854 ${\AA}$ around 35 GPa. The crystallographic symmetry of the sample (i.e. orthorhombic) is apparently retained up to 35 GPa as no clear evidence for the phase transition into spinel structure has been observed. The pressure-induced volume change in the M1 site ($Li^+O_6$) is more significant than those in M2($Fe^{2+}O_6$) and $PO_4$ tetrahedral sites.

유사 올리빈 구조를 가지는 탄소코팅 합성 $Li^+Fe^{2+}(PO_4)^{3-}$ 분말시료에 대한 상온-고압실험을 대칭 다이아몬드 앤빌기기를 이용하여 35.0 GPa까지 시행하였다. $LiFePO_4$의 압축 데이터를 이용하여 계산된 체적탄성률은 $130.1{\pm}10.3$ GPa이다. 18 GPa 이상의 압력에서 d = 3.386 ${\AA}$ 위치에 새로운 피크가 관찰되고 35 GPa에서는 d = 2.854 ${\AA}$에 또 다른 피크가 관찰되고 있으나 주 결정구조는 사방정계인 것으로 판단된다. 압력에 대한 단위 포 부피의 압축은 M1($Li^+O_6$)의 수축이 두드러지고 M2($Fe^{2+}O_6$)와 사면체($PO_4$)의 수축은 상대적으로 작은 것으로 나타났다.

Keywords

References

  1. Abramson, E. H., Brown, J.M., Slutsky, L.J., and Zaug, J. (1997) The elastic constants of San Carlos olivine to 17 GPa. Journal of Geophysical Research, 102, 12253-12264. https://doi.org/10.1029/97JB00682
  2. Alvarez-Vega, M.I., Gallardo-Amores, J.M., Garcia-Alvarado F., and Amador, U. (2006) Synthesis and structure of olivine-like arsenates $LiMAsO_4$ (M=Mn, Fe, Co and Ni) and their high-pressure spinel-like polymorphs. Solid State Sciences, 8(8), 952-957. https://doi.org/10.1016/j.solidstatesciences.2006.02.044
  3. Amador, U., Gallardo-Amores, J.M., Heymann, G., Huppertz, H., Mor, E., and Arroyo de Dompablo. (2009) High pressure polymorphs of LiCoPO4 and $LiCoAsO_4$. Solid State Sciences 11(2), 343-348. https://doi.org/10.1016/j.solidstatesciences.2008.09.012
  4. Andersson, A.S., Kalska, B., Hoggstrom, L., and Thomas, J.O. (2000) Lithium extraction/insertion $LiFePO_4$: an X-ray diffraction and Mossbauer spectroscopy study. Solid State Ionics, 130(1-2), 41-52. https://doi.org/10.1016/S0167-2738(00)00311-8
  5. Armand, M. and Tarascon, J.M. (2008) Building better batteries. Nature, 451(7179), 652-657. https://doi.org/10.1038/451652a
  6. Armstrong, A.R. and Bruce, P.G. (1996) Synthesis of layered $LiMnO_{2}$ as an electrode for rechargeable lithium batteries. Nature, 381, 499-500. https://doi.org/10.1038/381499a0
  7. Choi, J.B., Park, J.W., and Lee, S.W. (2003) Synthesis and structure of the layered cathode material $ Li[Li_{x}Mn_{1-x-y}Cr_{y}]O_{2}$ for rechargeable lithium batteries. Journal of Mineralogical Society of Korea, 16(3), 223-232 (in Korean with English abstract).
  8. Delacourt, C., Rodriuez-Carvajal, J., Schmitt, B., Tarascon, J.-M., and Masquelier, C. (2005) Crystal chemistry of the olivine-type $Li_{x}FePO_{4}$ system ($0{\leq}x{\leq}1$) between 25 and $370^{\circ}C$. Solid State Science, 7(12), 1506-1516. https://doi.org/10.1016/j.solidstatesciences.2005.08.019
  9. Downs, R.T., Zha, C.S., Duffy, T.S., and Finger, L.W. (1996) The equation of state of forsterite to 17.2 GPa and effects of pressure media. American Mineralogist, 81, 51-55. https://doi.org/10.2138/am-1996-1-207
  10. Fujisawa, H. (1998) Elastic wave velocities of forsterite and its ${\beta}$-spinel form and chemical boundary hypothesis for the 410-km discontinuity. Journal of Geophysical Research, 103, 9591-9608. https://doi.org/10.1029/98JB00024
  11. Garcia-Moreno, O., Alvarez-Vega, M., Garcia-Alvarado, F., Garcia-Jaca, J., Gallardo-Amores, J.M., Sanjuan, M.L., and Amador, U. (2001) Influence of the structure on the electrochemical performance of lithium transition metal phosphates as cathodic materials in rechargeable lithium batteries: A new high-pressure form of $LiMPO_{4}$ (M= Fe and Ni). Chemistry of Materials, 13, 1570-1576. https://doi.org/10.1021/cm000596p
  12. Hwang, G.C., Choi, J.B., Kim, J.-K., and Ahn J.-H. (2009) Synthesis and Rietveld refinement of the cathode material $LiFePO_{4}$/C for rechargeable lithium batteries. Journal of Mineralogical Society of Korea, 22(1), 63-72 (in Korean with English abstract).
  13. Kim, J.-K., Cheruvally, G., Ahn, J.-H., Hwang, G.-C., and Choi, J.-B. (2008) Electrochemical properties of carbon-coated $LiFePO_{4}$ synthesized by a modified mechanical activation process. Journal of Physics and Chemistry of Solids, 69, 2371-2377. https://doi.org/10.1016/j.jpcs.2008.03.018
  14. Kim, Y.-H., Hwang, G.C., and Kim, S.-O. (2009) Compression study on a synthetic goethite. Journal of Mineralogical Society of Korea, 22(4), 325-330 (in Korean with English abstract).
  15. Klein, C. and Hurlbut Jr. C.S. (2002) The 22nd edition of the Manual of Mineral Science after J.D. Dana. John Wiley and Sons. New York, 433p.
  16. Li B., Chen G., Gwanmesia G.D., and Liebermann R.C. (1998) Sound velocity measurements at mantle transition zone conditions of pressure and temperature using ultrasonic interferometry in a multi anvil apparatus. In properties of Earth and planetary materials at high pressure and temperature, M.H. Manghnani & T. Yagi (eds.), American Geophysical Union Monograph 101, 41-61.
  17. Rietveld, H.M. (1969) A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography, 2, 65-71. https://doi.org/10.1107/S0021889869006558
  18. Rodriguez-Carvajal, J. (2002) An Introduction to the Program Fullprof 2000 (v2001). Laboratoire Leon Brillouin, France.
  19. Streltsov, V.A., Belokoneva, E.L., Tsirelson, V.G., and Hansen, N.K. (1993) Multipole analysis of the electron density in triphylite, $LiFePO_4$, using X-ray diffraction data. Acta Crystallographica Sec. B, 49(2), 147-153. https://doi.org/10.1107/S0108768192004701
  20. Sung, C.-M. and Burns, R.G. (1978) Crystal structural features of the olivine-spinel transition. Physics and Chemistry of Minerals, 2, 177-197. https://doi.org/10.1007/BF00308172
  21. Tang, P. and Holzwarth, N.A.W. (2003) Electronic structure of $FePO_4$, $LiFePO_4$, and related materials. Physical Review B, 68, 165107(1-10). https://doi.org/10.1103/PhysRevB.68.165107
  22. Tarascon, J.M. and Armand, M. (2001) Issues and challenges facing rechargeable lithium batteries. Nature, 414(6861), 359-367. https://doi.org/10.1038/35104644
  23. Young, R.A. and Wiles, D.B. (1982) Profile Shape Functions in Rietveld Refinements. Journal of Applied Crystallography, 15, 430-438. https://doi.org/10.1107/S002188988201231X
  24. Young R.A. (ed.) (1993) The Rietveld method. International Union of Crystallography, Oxford.
  25. Zha C.S., Duffy T.S., Downs R.T., Mao H.K., and Hemley R.J. (1998a) Brillouin scattering and X-ray diffraction of San Carlos olivine: direct pressure determination to 32 GPa. Earth and Planetary Science Letter, 159, 25-33. https://doi.org/10.1016/S0012-821X(98)00063-6
  26. Zha C.S., Duffy T.S., Downs R.T., Mao H.K., Hemley R.J., and Weidner D.J. (1998b) Single-crystal elasticity of the ${\alpha}$ and ${\beta}$ of $Mg_2SiO_4$ polymorphs at high pressure. In properties of Earth and planetary materials at high pressure and temperature, M.H. Manghnani & T. Yagi (eds.), American Geophysical Union Monograph, 101, 9-16.

Cited by

  1. Compressibility Study of Pyromorphite at High Pressure vol.29, pp.4, 2016, https://doi.org/10.9727/jmsk.2016.29.4.191
  2. 합성 활석에 대한 압축 연구 vol.27, pp.4, 2013, https://doi.org/10.9727/jmsk.2014.27.4.283