Browse > Article
http://dx.doi.org/10.9727/jmsk.2018.31.4.277

High Pressure Behavior Study of Azurite  

Kim, Young-Ho (Department of Geology and Research Institute of Natural Sciences, Gyeongsang National University)
Choi, Jinwon (Department of Geology and Research Institute of Natural Sciences, Gyeongsang National University)
Choi, Jaeyoung (Department of Geology and Research Institute of Natural Sciences, Gyeongsang National University)
Publication Information
Journal of the Mineralogical Society of Korea / v.31, no.4, 2018 , pp. 277-285 More about this Journal
Abstract
Azurite ($Cu_3(CO_3)_2(OH)_2$) was compressed up to 21.52 GPa for its behaviors at ambient temperature. High pressure experiment was performed using the symmetrical diamond anvil cell employed in the angle dispersive X-ray diffraction method. Pressure was determined by ruby fluorescence calibration method. No phase transitions were observed within the present pressure limit and bulk modulus was determined to be 54.4 GPa when ${K_0}^{\prime}$ is fixed to be 4. Applying the normalized pressure-strain analysis, reliability of the azurite compression pattern was checked.
Keywords
Azurite; high pressure; bulk modulus; normalized pressure-strain analysis;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Fiquet, G. and Reynard, B. (1999) High-pressure equation of state of magnesite: new data and a reappraisal. Am. Mineral., 84, 856-860.   DOI
2 Gao, J., Zhu, F., Lai, X.J., Haung, R., Qin, S., Chen, D.L., Liu, J., Zheing, L.R., and Wu, X. (2014) Compressibility of a natural smithonite $ZnCO_3$ up to 50 GPa, High Press. Res., 34, 89-99.   DOI
3 Hazen, R.M. and Finger, L.W. (1978) The crystal structures and compressibilities of layer minerals at high pressures. II. Phlogopite and Chlorite, Am. Mineral., 63, 293-296.
4 Holl, C., Smyth, J., Laustsen, H., Jacobsen, S., and Downs, R. (2000) Compression of whitherite to 8 GPa and the crystal structure of $BaCO_3$ II, Phys. Chem. Miner., 27, 467-473.   DOI
5 Hwang, H., Seoung, D., Lee, Y., Liu, Z., Liermann, H.P., Cynn, H., Vogt, T., Kao, C.C., and Mao, H.K. (2017) A role for subducted super-hydrated kaolinite in Earth's deep water cycle. Nature Geoscience, 10(12), 947-953.   DOI
6 Jeanloz, R. (1981) Finite-strain equation of state for high-pressure phases, Geophys. Res. Lett., 8(12), 1219-1922.   DOI
7 Jeanloz, R. and Hazen, R.M. (1991) Finite-strain analysis of relative compressibilities: Application to the high-pressure wadsleyite phase as an illustration. Am. Mineral., 76, 1765-1768.
8 Keppler, H., Wiedenbeck, M., and Shcheka, S.S. (2003) Carbon solubility in olivine and the mode of carbon storage in the Earth's mantle, Nature 424, 414-416.   DOI
9 Kim, Y.H. and Yi, Z. (1999) High pressure X-ray diffraction studies on a natural talc, J. Miner. Soc. Korea, 12(1), 1-10 (in Korean with English abstract).
10 Kim, Y.H. and Kim, S.O. (2014) A compression study on a synthetic talc, J. Miner. Soc. Korea, 27(4), 283-291 (in Korean with English abstract).   DOI
11 Kim, Y.H., Choi, J., Heo, S., Jeong, N., and Hwang, G.C. (2015) High pressure behavior study of the apophyllite(KF), J. Miner. Soc. Korea, 28(4), 325-332 (in Korean with English abstract).   DOI
12 Kim, Y.H., Kim, S.J., and Choi, J.Y. (2017) A high pressure behavior study of $TiO_2$-complex, J. Miner. Soc. Korea, 30(3), 127-136 (in Korean with English abstract).   DOI
13 Klein, C. and Hurlbut, Jr. C.S. (1985) Manual of mineralogy(20th ed.), John Wiley & Sons, p. 596.
14 Martinez, I., Zhang, J., and Reeder, R.J. (1996) In-site X-ray diffraction of aragonite and dolomite at high pressure and high temperature; evidence for dolomite breakdown to aragonite and magnesite, Am. Mineral., 81, 611-624.   DOI
15 Liu, L.G. (1986) Phase transformations in serpentine at high pressures and temperatures and implications for subducting lithosphere, Phys. Earth & Planet. Int., 42, 255-262.   DOI
16 Logvinova, A.M., Wirth, R., Fedorova, E.N., and Sobolev, N.V. (2008) Nanometer-sized mineral and fluid inclusions in cloudy Siberian diamonds: new insights on diamond formation, Eur. J. Miner., 20, 317-331.   DOI
17 Mao, H.K., Xu, J., and Bell, P.M. (1986) Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. J. Geophys. Res., 91, 4673-4676.   DOI
18 Merlini, M. Perchiazzi, N., Hanfland, M., and Bossak, A. (2012) Phase transition at high pressure in $Cu_2CO_3(OH)_2$ related to the reduction of the Jahn-Teller effect, Acta Cryst. A, 68, 266-274.
19 Ming, L.C., Jayaraman, A., Shieh, S.R., and Kim, Y.H. (1995) In situ high-pressure x-ray diffraction study of $TlReO_4$ to 14.5 GPa: Pressure-induced phase transformation and the equation of state, Phys. Rev. B, 51(18), 12100-12106.   DOI
20 Pearson, D.G., Brenker, F.E., Nestola, F., McNeill, J., Nasdala, L., Hutchison, M.T., Matveev, S., Mather, K., Silversmit, G., Schmitz, S., Vekemans, B., and Vincze, L. (2014) Hydrous mantle transition zone indicated by ringwoodite included within diamond, Nature, 507, 221-224.   DOI
21 Redfern, S.A. (2000) Structural variations in carbonates. Rev. Mineral. Geochem., 41, 289-308.   DOI
22 Redfern, S.A. and Angel, R.J. (1999) High-pressure behaviour and equation of state of calcite, $CaCO_3$, Contrib. Miner. & Petrol., 134, 102-106.   DOI
23 Seto, Y. Hamane, D., Nagai, T., and Fujino, K. (2008) Fate of carbonates within oceanic plates subducted to the lower mantle, and a possible mechanism of diamond formation, Phys. Chem. Miner., 35, 223-229.   DOI
24 Ross, N.L. (1997) The equation of state and high-pressure behaviour of magnesite, Am. Mineral., 82, 682-688.   DOI
25 Ross, N.L. and Reeder, R.J. (1992) High-pressure structural study of dolomite and ankerite, Am. Mineral., 77, 412-421.
26 Rule, K.C., Reehuis, M., Gibson, M.C.R., Ouladdiaf, B., Gutmann, M.J., Hoffmann, J.-U., Gerischer, S., Tennant, D.A., Sullow, S., and Lang, M. (2011) The magnetic and crystal structure of azurite $Cu_3(CO_3)_2(OH)_2$ as determined by neutron diffraction. Phys. Rev. B83, 104401-409.
27 Tschauner, O., Huang, S., Greenberg, E., Prakapenka, V.B., Ma, C., Rossman, G.R., Shen, A.H., Zhang, D., Newville, M., Lanzirotti, A., and Tait, K. (2018) Ice-VII inclusions in diamonds: Evidence for aqueous fluid in Earth's deep mantle. Science, 359, 1136-1139.   DOI
28 Vink, B.W. (1986) Stability relations of malachite and azurite. Mineral. Mag., 50, 41-47.   DOI
29 William, Q., Knittle, E., Reichlin, R., Martin, S., and Jeanloz, R. (1990) Structural and electronic properties oof $Fe_2SiO_4$-fayalite at ultrahigh pressure: amorphization and gap closure. J. Geophys. Res., 95, 21549-21563.   DOI
30 Will, G., Hoffbauer, W., Hinze, E., and Lauerjung, J. (1986) The compressibility of forsterite up to 300 kbar measured with synchrotron radiation, Physica, 139 & 140B, 193-197.
31 Faust, J. and Knittle, E. (1993) The equation of state, amorphization and high-pressure phase diagram of muscovite, J. Geophys. Res., 99(B10), 19785-19792.   DOI
32 Xu, J., Kuang, Y., Zhang, B., Liu, Y., Fan, D., Zhou, W., and Xie, H. (2015) High-pressure study of azurite $Cu_3(CO_3)_2(OH)_2$ by synchrotron radiation X-ray diffraction and Raman spectroscopy, Phys. Chem. Minerals, doi: 10.1007/s00269-015-0764-7.   DOI
33 Angel, R.J. (2000) Equation of state, Rev. Mineral. Geochem., 41, 35-59.   DOI
34 Angel, R.J., Gonzalez-Platas, J., and Alvaro, M. (2014) EosFit7c and a Fortran module (library) for equation of state calculations, Zeischrift fur Kristallographie, 229, 405-419.
35 Brenker, F.E., Vollmer, C., Vincze, L. Vekemans, B., Szymanski, A., janssens, K., Szaloki, I., Nasdala, L., Joswig, W., and Kaminsky, F. (2007) Carbonates from the lower part of transition zone or even the lower mantle, Earth Planet. Sci. Lett. 260, 1-9.   DOI
36 Dasgupta, R., Chi, H., Shimizu, N., Buono, A.S., and Walker, D. (2013) Carbon solution and partitioning between metallic and silicate melts in a shallow magma ocean: implications for the origin and distribution of terrestrial carbon. Geochim. cosmochim. Acta, 102, 191-212.   DOI